AD-AL00 819 AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OM SCHOO=—ETC F/¢ 9/2°
CONSTRUCTION OF A SENERAL PURPOSE COMMAND LANGUASE FOR USE IN C-=fTC (/)
SEP 80 w D GRIESS

UNCLASSIFIED AFIT/GCS/EE/805-15 "

Accession F;r

— i
NTIS GRA&I

DTIC Tak

Unannounced

~DiSLPibUti:n/

Avioid i,

Diw

Special

st f ’
]

: s (]
Justification

—

Avnilnbility e

/e

CONSTRUCTION OF A GENERAL FURPOSE

COMMAND LANGUAGE FOR USE IR

COMPUTER TO COMPUTER DIALGG

) THESIS -

AFIT/GCS/EE/89S-15 v

Approved for public release;

+ PPN & P R o A

Wayne D. /Griess
‘Captain USAF

distribution unlimited.

DTIC

ELECTE
JuL 1 1981

D

T T e ere—g—

AFIT/GCS/EE/80S-15

CONSTRUCTION OF A GENERAL PURPOSE
COMMAND LANGUAGE FOR USE IN

COMPUTER TO COMPUTER DIALOG

THESIS

Presented to the Faculty of the Schocl of Engineering

of the Air Force Institute of Technology
Air University
in Partial Fulfillment of the
Requirements for the Degree of

Master of Science

by
Wayne D. Griess, B.S.
Captain USAF
Graduate Computer Systems

September 1980

Approved for public release; distribution unlimited.

Preface

The AFIT School of Engineering installed, in April 1980, a
Data General ECLIPSE $/250 and NOVA 2/10 computer system to
serve as the foundation for a digital signal processing
facility. To expand the processing capability of the new
facility, a means to interface the NOVA/ECLIPSE computers with
the locally accessible Aeronautical Systems Division CDC CYBER
computer system was desired. I undertook this project and
constructed a general purpose command language that could be
used in varied applications.

I heartily thank Captain Larry Kizer, my thesis advisor,
for his steady encouragement and sure support. I also thank Lt
Colonel James Rutledge and Professor Gary Lamont for their
support. On several occasiomns, Mr. Hurst D. CarI;ttom of the
Avionics Laboratory provided invaluable and timely assistance.
His experience and knowledge of the NOVA/ECLIPSE computers were
eagerly exploited. Finally, I thank my wife‘Betty and my two
children for their patience, sacrifice, and love, They have
been a source of strength and sustenance throughout this
project. I also reverently give thanks and praise to my Lord

and Savior Jesus Christ for His providence and counsel through

it all.

Wayne D. Griess

ii

L m———

I — - -

Preface .+ ¢« ¢« o« o o« o

List of Figures . . .

Abstract . « + o o+ o o

I.

II.

III.

Iv.

Introduction . .

Background

nts
e s o 85 e e s e s 6 & e s s e e v e
« s s e e s e s e 8 s s+ e e e s s .
e ® & 8 & s 6 s s s s 8 e e s e e =

Problem Statement . . ¢« « ¢ « o o ¢ o o o o o o

Scope . .

. - - . - . « e

General Approach and Preliminary Results . . .

Sequence of

Presentation . « « v « o o o o o o

Detailed Analysis/Requirements . « « « « « o« « « o &

Man-Machine
Computer to

Interface « « « o « « o o o & o o @
Computer Interface . « & o o« « o &

Command Language Interfacing . . « « « « « + &
The NOVA/ECLIPSE Computers . « « « « « o« « o &«
Modes of Operation . . . & o ¢ & « o o o o« o« &«

Development of the Program . . « « o « o o o o o o =«

Development

Theory and Background « .

Transparent Terminal Mode « &

The
The
Development
Development
Development
The
The

Action Files . . « & & ¢ o o o« o &
Command Language Interpreter Mode .
of TTERMOP . . . & ¢ ¢ ¢« & o ¢ o &
of the Action Files . . « « « ¢ « .
of MONITOR . . ¢ & & o o o o o o &
MONITOR Task .+ . ¢ o « o« o o o o &
SYSIN Task &+ &+ o ¢ s o ¢ o o o o &

Handshakiung Conventions . . « « o« o« o &

Validation . . .

During Development . ¢ « o & « o« o o o o o o
After Development « « ¢ + v ¢ ¢ o« o ¢ o 2 ¢

Conclusions and Recommendations . « « « o « s o «

Conclusions

* o . o . « e @ . s & . ° . . o

Recommendations « « « « o ¢ o « o o o ¢ o o o

Bibliography . « . . .

iii

Page

ii

vii

—

AT R e

11
13
15
18

21

56
57

59

Appendix
Appendix
Appendix
Appendix

Vita . .

MONITOR
Program
Loading

Program

User Manual
Descriptive Flowcharts
and Executing MONITOR .

MONITOR Source Listing

iv

60

81

105

107

189

[N

T TwWYT T T«

Skeletal Command Action File
Sample from Cyber Action File

Program MONITOR Structure Chart

MONITOR.FR (Part 1)

Figure
1
2
3
4
5 MONITOR.FR
6 MONITOR.FR
7 MONITOR.FR
8 MONITOR.FR
9 MONITOR.FR
10 BGIN.SR .
11 PROMPT.SR
12 GETRSPS.FR
13 CNVRT.SR .
14 TOTERM.SR
15 WRITSYSTM.F
16 WRSYS.SR .
17 WRITLOCAL.F
18 READLWRITS.
19 RDAWR.SR .
20 READYREAD.F
21 SENDFILE.FR
22 EXCLI.SR .
23 GETFILE.SR

(Part
(Part
(Part
(Part

(Part

R ..
R . .
FR .
R ..

(Part

2)
3)
4)
5)

6)

1)

List of Figures

Page

35
36
48
82
83
84
85
85
86
86
86
87
88
89
89
90
90
90
91
91
92
93
94

GETFILE.SR (Part 2) & + v ¢ « « ¢ & « o « o o o « o « 95
RECEVFILE.FR + « & v ¢« & v v o o v v o o o 0 v v v u o 96
TERMOP.SR (Part 1) . & v v & v ¢ ¢ o o ¢« « o o « o o« 97
TERMOP.SR (Part 2) . & & o 4 ¢ s o « o o « « « o « « . 98
TERMOP.SR (Part 3) v & v 4 4 « o o ¢ o o o« o o o « « « 99
TERMOP.SR (Part 4) v v ¢« v v ¢ & o o o o « o« o o o o « 99
SYSIN.SR (Part 1) . o & & & v v & o o o o« « « « o« « . 100
SYSIN.SR (Part 2) + v v & v 4 ¢ o « o o o o o o « o . 101
SYSIN.SR (Part 3) '+ v ¢ v v 4 o « o« « 4+ o o« o o« o o . 102
SYSIN.SR (Part 4) . v ¢« v ¢« 4 ¢« ¢ « v o« & « o o « o« . 103

SYSIN.SR (Part 5) v v ¢ v o v ¢ o o o s o o« o« « o « « 104

vi

4 e e

AFIT/GCS/EE/80S~- 15

Abstract

Two computer programs were developed and implemented to
enable intercommunication between a Data General NOVA/ECLIPSE
computer system and another modem linked computer system. One
program, called TTERMOP, allows a wuser to sit at a NOVA
terminal and interact with a connected system in a transparent
mode. The other program, called MONITOR, is a command language
interpreter that examines and executes instructions contained
within an action file. An action file, consisting of
instruction strings ard associated control parameters, is
designed to be dependent upon a connected system with regard to
contents, yet independent of such a connected system with regard
to structure and format. The interpreter is written in FORTRAR
Iv with FORTRAN and assembly language modules. Actual
implementation of the programs is accomplished between the
NOVA/ECLIPSE and the Aeronautical Systems Division Control Data
CYBER computer system. ASCII data files between 20 and 35,000
bytes have been transferred between the two interconnected
systems, each transfer initiated by a single string command
acceptable to the interpreter and compatible with a tailored
action file for the CYBER system. The programs were designed to
be flexible enough for use with several different connected
systems, and general enough to be hosted on a system other than
the NOVA/ECLIPSE. However, no attempt is made to implement the

programs outside of the NOVA/ECLIPSE - CYBER environment.

vii

CONSTRUCTION OF A GENERAL PURPOSE COMMAND LANGUAGE
FOR USE IN COMPUTER TO COMPUTER DIALOG

I. Introduction

Background

Under sponsorship of the United States Air Force Electronic
Systems Division and the United States Air Force Aerospace
Medical Research Laboratory, the Air Force Institute of
Technology (AFIT) Electrical Engineering (EE) department is
undertaking research in digital signal processing, specifically
digital speech processing and digital image processing. A Data
General Corporation (DGC) NOVA 2/10 computer, a DGC ECLIPSE
§/250 computer, and associated peripheral equipment are being

combined and integrated to form the signal processing facility.

To expand the local processing capability of the facility,
the EE department proposed to interface the DGC computers with
the larger and more sophisticated Control Data Corporation (CDC)
CYBER computer system, which is operated by the United States
Air Force Aeronautical Systems Division (ASD) and which provides
support to AFIT. (Both AFIT and ASD are located at
Wright-Patterson AFB, Ohio.) Interfacing the two systems would
allow intercommunication between the two systems, wherein the
advantage of each system”s features could be utilized. The CDC
CYBER system, consisting of a dual CYBER 175 and a CYBER 750,
could readily provide the "number crunching" and file repository
required to help analyze signals. The NOVA/ECLIPSE system could

then be devoted to other signal processing functions, such as

- - - — -

analog to digital/digital to analog conversions. Furthermore,
though the systems would be capable of intercommunication, the
failure of one of the two systems would not mean the failure of
the other system. Thus, each system could stand alone -- or be
interconnected for supplementary processing power,

Expanding the capability of the signal processing facility
by interconnection to the CYBER computer system may not be the
only expansion possible. Many other <computer facilities are
available in the AFIT School of Engineering, as well as
throughout Wright-Patterson AFB. The EE department also
proposed, therefore, that the method of interfacing the local
NOVA/ECLIPSE cowmputers be flexible enough to. be wused with
systems other than the CYBER, and that the interfacing be
general enough to be applied by separate and distinct systems,

if possible.

Problem Statement

Interfacing the NOVA/ECLIPSE computers to the CYBER system
or any other system may be viewed in two parts. One part of the
interfacing would be to connect the NOVA/ECLIPSE computers to
the CYBER system just as any other peripheral would be connected
or appear to be connected. In this case, the CYBER system would
treat the NOVA/ECLIPSE computers as one of its many terminals,
not recognizing that it is a complete computer system, This
type of interface 1is not complex, and involves accessing an
input and output port on the NOVA or ECLIPSE via a data line of

the 1local telephone system to the CYBER system., Connection to

the CYBER system would be accomplished in the same fashion as
other terminals are connected, A user would call a prescribed
telephone number and couple the telephone line to the data rt
line via a standard modem. After <connection, a resident
software program designed for the purpose would be <called into
execution to contrcl input and output transfers. Any local
terminal of the NOVA or ECLIPSE, whichever owned the sclected
data port, would appear transparently as a terminal directly
connected to the CYBER.

The limitations of this first part are the same as those
limitations any typical terminal has when connected to the CYBER
systeu. First of all, the language for communication musi be
that of the "host" system, and in this instance, it is the CYBER
operating system. Presently, the CYBER operating system
language is called NOS/BE (Network Operating System/Batch
Environment). The wusers of the signal processing facility
desire a language of intercommunication other than NOS/BE, that
simplifies intercommunication and reduces the complexity of user
access. Furthermore, they desire that such a 1language be
understandable and portable, i.e., that may be used or more
than one machine for the same purpose. L second and even
greater limitation of the transparent terminal interface is that
no direct computer to computer dialog may take place. Under a
transparent terminal operation, users may access files of the
CYBER or connected system, but cannot access local files. Also,
there 1is no provision for the direct exchange of information,

such as file transfers, in the transparent mode.

g ————— -

. g o———

A second part of interfacing, then, would be to connect the
NOVA/ECLIPSE computers to the CYBER system or any other system
such that direct information exchanges are possible. Within
this type of environment, a user would have access to files on
the NOVA/ECLIPSE and the connected computer system, For
example, files from the local system could be transferred to
the connected system, executed, and returned. This type of
interfacing is significantly more complex, even though basic
connection techniques remain the same, since files must be
identified and manipulated. Because of this need to manipulate
files, the software program to control information transfers
becomes much more complex particularly; and, hence, requires the
greater concentration of design and development efforts. Just
as in the case of the transparent mode, the usere of the signal
processing facility desire a language of intercommunication that
is understandable and portable. The language must be simple and
provide a means to issue commands both to the local NOVA/ECLIPSE
system and the connected computer system, such as the CYBER.

The problem, then, is to develop a method of
intercommunication for use in computer to computer dialog. In
its narrower focus, the problem becomes one of developing a
command language on the DGC NOVA/ECLIPSE computer system for

intercommunication with the CDC CYBER computer system.

© e e - e ————— =

Scope

An examination of this problem involves researching
computer to computer interconnections, with particular emphasis
upon software development. The compatability of operating
systems 1is briefly considered, with respect to the degree of
interconnection required at the software level. The scope of
the study also includes the guidelines that surround computer
to computer dialog, humanized input and output, and man-machine
interfaces. Though hardware considerations in the actual
implementation will be <considered, the study is not oriented
toward hardware, nor will hardware be examined in any depth.
Further, the study will not specifically be concerned with the
actual digital signal processing capabilities of the computer
system. Although the topics above will be <considered, the
study will be devoted almost exclusively to the analysis,
design, development, implementation, testing, and review of
software for interfacing the NOVA/ECLIPSE computers to a
connected computer system (specifically the CDC CYBER) via a

defined command language.

General Approach and Preliminary Results

The first step in constructing a command language for use
on the NOVA/ECLIPSE computers was to search the literature for
ideas and projects of a similar nature. Few articles were found

that directly impacted upon the project at hand, but methods and

parameters for interfacing systems in general were investigated.

o

1 4
o et 2~ - e e

- — e ————

Other thesis efforts were reviewed for applicability to this
effort, and possible expansion (Ref 4 and 8). The literature
investigation was followed by a period of machine
familiarization, both of the NOVA/ECLIPSE and the CYBER. As the
NOVA/ECLIPSE computer system was installed just prior to the
full scale thesis effort, much time was spent learning the
characteristics of the NOVA/ECLIPSE Real-Time Disk Operating
System (RDOS). Initially, programs taken from operating
manuals were copied and executed. Later, original programs were
developed to duplicate the same actions. These initial efforts
concentrated on assembly language facilities, as these were the
least familiar. The CYBER had been used before and was not
unfamiliar. Nonetheless, operating system characteristics were
examined in more depth.

Design of the software to implement a transparent terminal
operation was next. It is at this point that the details of
interrupts and their operation were examined and tested in
experiments. Once the transparent mode was workable from a
local terminal to another local terminal, efforts turned to
developing the actual command language. Using top-down design
techniques and successive refinement, individual modules were
developed as needed to implement parts of the language. Early
on, the project was divided into two parts, the output from the
NOVA/ECLIPSE and the input to the NOVA/ECLIPSE. Multitasking
was used to allow asynchronous operation of these two parts. A
further division was made to the design. An action file was

created to actually contain command sequences as needed by the

P = g - — ——

- ——

user. The main program became an interpreter to examine and act
upon this action file. Once a working subset of the final
product was available, access to the CYBER system was tried.
The transparent mode software required minor modifications and
transitioned well to on-line execution. The transition of the
command language itself was more painstaking and slow.
Eventually the modules were all developed and combined,
and then several tests and trials were conducted. Once the
program was in a reasonably workable state, efforts began to
more fully and comprehensively document design, development,
implementation, and validation findings. Finally, the project
was put into written form and a user”s manual was written to
instruct users in the use of the command language. Follow-on
steps to this process are recommended in the Conclusion, Chapter

v.

Sequence of Presentation

The introduction to this project is followed by an analysis
of the 1literature regarding man-machine interfaces and command
language structures, an analysis of the computer systems
involved, the transparent terminal operation mode, and the
command language itself. The analyses are followed by an
explanation of the development theo,r behind the software
programs. Once the theory has been presented, the actual
development of the software will be discussed, concentrating
first on a program called TTERMOP -- the transparent terminal

operation mode software, and then a program called MONITOR --

S

K

the actual command language mode software. The discussion of
MONITOR will include a look at various subordinate modules and
routines that comprise MONITOR. A section regarding validation
of the software will follow the software development
description, including its current state and usefulness. The
project will then be summarized, pointing out several

possibilities for follow-on work to this thesis.

¥

Lo

I1. Detailed Analysis

An analysis of the problem of interconnecting the

NOVA/ECLIPSE computers to another computer cystem begins with a

look at interfacing 1in @general. Several elements of the
literature are examined with respect to the concepts of
man-machine interfaces, computer to computer dialog, and

command ianguages. This introductory look at the protlem is
followed by an introduction to the NOVA/ECLIPSE computers and
their primary features. Once the computers have been described,
a closer look at the methods of interfacing for the NOVA/ECLIPSE
are mentioned, particularly with regard to the modes of

operation envisioned.

Man-Machine Interface

It is becomming increasingly important, though it has
always been important, that there be a proper perspective 4ith
regard to the interaction of people with computers. The past
emphasis seems to have been on the wusage of computers; the
newer emphasis is on the usage of people (Ref 5:4). This change
in emphasis is an outgrowth of the volumes of information
computers generate and the ever wider proliferation of
computers. How do, or how should, the two cooperate? James
Martin states: .

This difference in thinking taleat -~ the computer

being good for altrafast sequential logic and the

human being capable of slow but highly parallel and

associative thinking -- is the basis for cooperation
between man and machine (Ref 5:7).

G —— e — o = e

The logical answer to cooperation, then, lies in wutilizing
both people and computers in a manner consistent with their
strengths. It is obvious, therefore, that people should not be
called upon to do the kind of work that a computer can do
better. It should be equally obvious, as well, that computers
should not be called upon to be substitute people. The future
will wundoubtedly lead to ever greater computer maturity, to the
point where some human functions can be paralleled or
duplicated. The present, however, would seemingly be better
served if people and computers, each with their relatively
mutually exclusive spheres of advantage, were deliberately and
constructively meshed together.

With this view in mind, human beings could more profitably
gain from computers 1if computers were creatively linked to
enhance their speed, throughput, and intercommunication. And,
such computer systems would better profit people who use them,
if their output and input facilities were readily wunderstood,
easily manipulated, functionally controlable, and consumer
dependent. The point where interaction culminates in
identifying the most effective techniques for enabling a user to
access needed data quickly, easily, and in a relatively natural
manner, is the wuser-computer system interface, called the

man-machine interface (Ref 3:1-1).

10

Computer to Computer Interface

Linking computers together is an action to improve upon the
individual computer”s capability and to provide a more powerful
resource for users. Just as input and output data is a dominant
factor in the application of single computers (Ref 10:119), so
it is with multiple computer systems. It should not be
surprising, therefore, that intercomputer or interprocessor
communication is primarily at the data level (Ref 12:67).

Interfacing, or 1linking computers together, 1is widely
discussed throughout the computer literature. Many types of
interfacing are possible, and many terms are used to describe
differing methods and degrees of interface. An article in

Computing Surveys presented a naming scheme or taxonomy for

identifying various systems of interconnected computers (Ref
2:197-213). The scheme was presented as a tree diagram of four
levels, wherein the two highest levels were concerned with
strategic (policy) issues and the two 1lower levels were
concerned with tactical (implementation) issues. The authors
defined two terms of interest with regard to communication
interconnection. The first term, path, is a medium by which a
message 1is transferred between the other system elements, such
as wires or buscs. The other term was switching element, an
"intervening intelligence" between the sender and receiver of a
message. The switching element affects the destination of the

message in some way.

11

Within this scheme, communication interconnection is either
direct or indirect. A transfer path can be either dedicated or
shared, and a variety of system architechures may be employed to
interconnect computers. As an example, a multiprocessor system
is described as direct, having no need for a transfer control
method, and wusing a shared path transfer structure with a
central memory system architechure. As another example, an
irregular network system architecture follows from an indirect
communication interconnection, decentralized routing, and a
shared transfer structure. In the authors” scheme, the variety
of interconnections may range from a complete, dedicated
interconnection to an indirectly, decentralized, shared path
window. Nonetheless, the common element used to describe all is
the data level communications path.

In any interconnected computer system, a protocol 1is
necessary. "A protocol is essentially a set of conventions
between communicating processes on the format and content of
messages to be exchanged (Ref 1:4-3)." The protocol can be
easily determined in some computer links by simply adapting the
internal protocol of onme of the individual computers.

In all cases, computers are interconnected to benefit the
users. The better and clearer the interconnection of computers,
the 1less 1likely the confusion between man and machine.
Further, the more 1likely will be the usefulness of the system
for the people it was meant to serve. From simple
interconnections of a dedicated nature to large networks,

computer to computer communications is dealt with at the data

12

level and 1is the starting point for future interconnection

efforts.

Command Languape Interfacing

The problem of interfacing the NOVA/ECLIPSE computers with
other computer systems is one of command language interfacing,
in which the goal is tc construct a general purpose command
language that provides the means for computer to computer
dialog. This 1is another element of computer to computer
interfacing, in which the connecting feature is a command
language itself. Command languages collectively form a category
of intercomputer connectivity, in which the type and purpose of
a command language may vary widely from use to use. One of the
most widely recognized command languages is that of the UNIX
(trademark of Bell Laboratories) Time-Sharing System developed
by the Bell Telephone Laboratories (Ref 11:1905), in which the
most visible system interface 1is the '"shell" or command
language interpreter, through which other programs are called
into execution singly or in combination (Ref 6:1900). The UNIX
shell 1is a high-level programming language that provides users
with an interface into process related facilities of the UNIX
operating system, The language is powerful, concise, flexible,
and, once it becomes familiar, easy to use. It serves as a
useful basis of comparison for other.command languages and was a
source of guidance for this project. However, the degree of
difference between the developed command language for the

NOVA/ECLIPSE system and the UNIX shell is singularly

13

significant. To meet the particular constraints of this
project, the ROVA/ECLIPSE command language was developed as an
interpretive process that examines tailored files, called action
files, for individually connective systems. In fact, the
pattern of developwent parallels the so-called PROCEDURE files
utilized within the CDC NOS/BE (Ref 7:5-21 - 5-38).

The CDC PROCEDURE files allow several CDC CYBER commands to
be combined and ordered as desired into a single package for
execution. Each file has a header and body, of which the header
statement starts the header, The header starts with the keyword
PROC., contains the name of the procedure, and ends with the
names of arguments to be used within the procedure. The next
statements of the file are the body, and the body is terminated
with an end-of-record. The body is made wup of control
statements, which are inserted into the job control stream when
the PROCEDURE file is called into execution. The PROCEDURE file
is called into execution by a call-by-name statement or by a
call statement that begins with BEGIN. The operating system
makes the appropriate parameter and variable substitutions
within the PROCEDURE file, and then executes the file”s body of
statements. Thus, via PROCEDURE files, users of NOS/BE may
combine a sequence of control statements (commands) into a
single command with a variable number of arguments. The entire
sequence may be executed by a single reference to the name of
the PROCEDURE file, eliminating the need for a user to repeat
minor, often used commands, such as REWIND. It also allows the

computer operating system to keep track of the entire command

14

sequence without user intervention.

The NOVA/ECLIPSE Computers

The DGC NOVA and ECLIPSE computers are both 16 bit machines
installed within the digital signal processing facility of the
AFIT EE department., The NOVA 2/10 and the ECLIPSE S/250 share a
ten megabyte disk through an Inter-Processor Buffer, which
arbitrates simultaneous disk access, Each computer operates
under a Real-Time Disk Oﬁé?nting System (RDOS), which 1is
partially resident in core memory as well as on the disk itself.
Each operating system starts with generation of SYSGEN, a
program that permits the RDOS to be tailored to the hardware and
software configurations available at a location. This system
generated program includes, among other things, the nunber of
printers, the number of teletypes, and the number of other
devices to be connected to and recognized by the coperating
system. The SYSGEN created program for the ECLIPSE 1is called
ESYS; the SYSGER created program for the NOVA is called NSYS.
NSYS, however, includes the generation of a secondary teletype
for both 1input and output, denoted by device codes $TTIl and
$TTO1l, respectively. Once a device code is system generated,
the operating system identifies the interrupts of the device and
appropriate handling procedures. This investigation required
user defined interrupts and handlers for these two particular
devices. Hence, another program was generated, called NSYS1, in
which the operating system (RDOS) did not "know" about device

codes $TTI1 and $TTOl.

15

Though both the NOVA and ECLIPSE may share disk files,
there are differences in their hardware features and
capabilities. The AFIT EE department decided to wuse the NOVA
computer as the interface link to any other connected system and
most peripherals, thereby freeing the larger and faster ECLIPSE
for actual processing of data. In the remzinder of this thesis,
therefore, the term NOVA/ECLIPSE will be used to indicate that
both the NOVA and ECLIPSE computers are available, yet only the
NOVA is wutilized 1in the actual interfacing to the connected
systems., Thus, all device codes and descriptions may be
thought of as pertaining only to the KOVA 2/10.

In order to connect any other computer system to the
KOVA/ECLIPSE computers, access 1is required tc the computers
themselves. It was decided to make wuse of standard RS-232
interface connectors and modem links, wherein the NOVA device
codes of S$TTI1 and S$TIOl would serve as device ports for the
connected system. Information from the NOVA/ECLIPSE to the
connected computer system would be transmitted via device code
$TTOl. Information from the connected computer system to the
NOVA/ECLIPSE would be transmitted via device code $TTII.
Becausc of the way RDOS operates, each device code used must be
assigned an integer channel number. Accordingly, throughout the
software and documentation that is developed, device codes and
channel numbers will refer to the. same entities, particular
device codes and individual channel numbers being equated at

various times.

16

H

The basic method of interaction with the RDPOS 1is through
the Command Line Interpreter (CLI), a program that accepts
command lines from the console and translates them into RDOS
commands. Through the CLI, high-level compilers like FORTRAN
may be invoked, as well as the assembler and other wutilities.
Interface into the RDOS cun also be achieved via system calls
and task calls. Both of these calls were wutilized within the
development of the software for this project. Essentially, the
RDOS can be addressed directly via system calle in a progran.
The general form of a system call is (Ref 9:3-1):

.SYSTM

command mnemonic

error return

normal return
The mnemonic .SYSTM precedes each system command, which passes
control through the RDOS task scheduler to the system call
processor, a core-resident ©portion of RDOS. The task monitor
saves the program (or task) environment 1in a special block
called a Task Control Block (TCB) and saves the contents of
location 16, the User Stack Pointer (USP), befere passing
control to the_call processor. Upon execution of a system call,
the RDOS takes the error return if it encounters some impediment
while executing the call. Accumulator two contains an error
code that describes any error condition and may be displayed by
the user. If the <call succeeds, the RDOS takes the normal
return., System calls are detailed in the RDOS Reference Manual,
Chapter 3 (Ref 9:3-1 - 3-12). A task «call 1is similar to a
system call, except for the following points. Task calls have

no .SYSTM mnemonic before the task command mnemonic. The RDOS

17

. — e

executes task calls in user address space, whereas system calls
are executed in operating system space. And finally, many task
calls have no error returns. The details of task calls may be
found in the RDOS Reference Manual as well (Ref 9:5-1 - 5-8).
Other conventions of the RDOS and NOVA/ECLIPSE computers will
be introduced and explained as encountered in the discussion of

the project development.

Modes of Operation

The most direct method of connecting the local NOVA/ECLIPSE
computers to any other computer system, particularly the locally
accessible CDC CYBER system, is via a standard RS-232 interface
link to one of many available modems. The simplest method of
interconnection is to allow a local NOVA terminal to act as a
transpareut CYBER terminal, i.e., as if the NOVA terminal were
directly connected to the CYBER and not the NOVA. This requires
a software interface that allows the NOVA computer to accept
data in from the CYBER, display to the 1local terminal, and
vice-versa. This at least allows access via the NOVA computer
to the connected computer system, but it does mnot allow file
transfers or any other direct intercommunication between
systems. Thus, to extend the concept further, additional
software 1is needed to enable direct access from one computer to
the other. One method of doing thi; is to create a program to
mesh the NOVA with a particular system to the degree that files
on either system are accessed by the user on the NOVA, It was

recognized early that such software should be designed to be

18

independent of a particular system. Hence, a more general
software product was desired that allows interaction between the
NOVA/ECLIPSE and a variety of other computer facilities.

Since each computer system is somewhat different, a method
was needed to confront these differences in a general fashion by
the local NOVA/FECLIPSE system. If a particular segment of the
software was designed to Dbe compatible with a particular
connected system, then the NOVA would have to be able to select
that software and use it on demand. Further, the act of
selection should not tie the NOVA to the selected system, as a
different system may be desired at a later time. To meet these
constraints, the pattern of a so-called action file was
conceived, based wupon the general concepts of a PROCEDURE file
as utilized in the CDC NOS/BE.

To extend this concept to the 1local NOVA/ECLIPSE system,
both the action file (patterned after the PROCEDURE file) and a
method of reading and acting upon the action file was required.
Once one or more action files could be constructed on the NOVA
system, how could they be utilized? In the simplest context,
the action file may be thought of as a simple list of command
sequences to be executed by the system. A method was needed to

read each sequence of instructions and send them to the

connected system to be executed. This presented additional
considerations. First of all, the action file sequences, if
more than one, must be distinguishable from each other. When

and where would one sequence start and end? Secondly, the

connected system may respond at some time and in some fashion to

19

e o e e——

inputs, perhaps requiring that responses somehow be
acknowledged. Thus, what responses would be expected and how
or when should they be acknowledged? Thirdly, sending
instructions to the connected system limits the local system in
taking independent action. Thus, there must be some capability
of instructing the 1local system in the midst of action file
execution. £Each of these considerations and questions led to
the idea of an action file interpreter -- a program that would
seek out the desired action file, 1initiate and terminate
selected command sequences, allow for responses to the connected
system, and alert the 1local NOVA/ECLIPSE system to necessary
inputs and outputs. Thus, the basic idea for computer to
computer dialog regarding the NOVA/ECLIPSE system revolved
around the design and development of action files peculiar to
possible connected systems and a general interpreter for the
action files. The process of designing these began by
considering a specific system to work with, and the natural

choice was the CYBER system.

20

I1I. Development of the Program

The development of the software to permit the NOVA/ECLIPSE
computers to be interconnected to another computer system was
done in a top-down manner, using successive refinement. This
chapter describes the software development of three specific
software parcels: (a) program TTERMOP, (b) program MONITOR, and
(c¢) the action files. The program TTERMOP is a program that
allows the wuser on the NOVA/ECLIPSE terminal to operate in the
transparent terminal only mode. The program MONITOR 1is the
command language interpreter that reads and acts upon selected
action files. The action files are created in a prescribed
manner that meets the expectations of the interpreter. The
action file referenced within this text 1is that created and
implemented to intercommunicate with the CDC CYBER computer
system. The development of MONITOR and the action files was
interdependent and cannot be artificially separated.
Nonetheless, the following text does treat the development of
each somewhat separately, first describing the generation of the
action files and then the program MONITOR. Before these
discussions are presented, some theory and background concerning
the development are presented, in order to acquaint the reader

with the overall concepts and implementation conventions.

21

Development Theory and Background

After analyzing the problem and deciding that three
partitionable software products were to be developed -- program
TTERMOP, program MONITOR, and the action files -~ the
alternative methods of accomplishment and the tools to be used
in the development were considered. Some factors bearing upon
the considerations were the stated objectives of the solution to
the problem itself. The program MONITOR should be as flexible
as possible, so as to be wutilized with as many connected
systems as possible. Also, program MONITOR should be as
general as possible, so as to be a completely portable (to the
degree possible) program that could be hosted on other systems,
in addition to the NOVA/ECLIPSE. This dictated that the action
files be dependent upon the connected system for content, but
independent of the connected system as far as structure. One
final factor was to develop a system that enabled the
NOVA/ECLIPSE computers to interact with the CDC CYBER computer
system.

In consideration of these factors, the software needed to
be developed in as high-level a language as permissible, thereby
supporting its generality. PASCAL was a logical choice. A
structured language, such as PASCAL, lcads to simplified data
structures and more straightforward file structure
manipulations. In addition, PASCAL has powerful features, such
as recursion, that enable complex algorithms to be more readily

designed and developed. Nonetheless, PASCAL was not available

22

on the NOVA/ECLIPSE computers at the time of development,
Other structured languages that seemed to lend themselves to
this type of undertaking were not available either. FORTRAN IV
and FORTRAN V were available. FORTRAN IV was selected because
it was available, 1s a high-order language, and is, perhaps, as
universal a language as exists. FORTRAN V was not selected
because of the case for FORTRAN IV and the fact that FORTRAN V
is essentially a superset of FORTRAN 1V, Thus, if a wuser
chooses, FORTRAN IV may be extended to FORTRAN V, It also
seemed rcasonable at the outset to expect to use some assembly
language programs to implement device handlers and routines that
depended heavily upon the operating system characteristics.
Thus, both the DGC FORTRAN 1V and assewbly languages are used to
develop the software parcels. Some variations from the
American National Standards Institute (ANSI) standard FORTRAN
were wutilized, but only to enhance readability and
understanding. None of the uses would preclude adaptation to
other system FORTRAN versions, depending upon the assembly
language that may be required for another system.

Transparent Terminal Mode. The idea to <create a

transparent terminal mode of operation was two-fold. First,
the terminal mode would at least allow access to another system.
Depending upon the ultimate limitations of a command language,
such a mode would be desirable to écrmit detailed interaction
with a connected system not possible at the higher level of the
command language. Further, such a mode would serve as a handy

option for tramsitioning in the middle of any command langauge

23

b

execution. Secondly, the development of a terminal mode would
be a prelude to other developments. Such a prelude would
provide system familiarization and understanding in a less
complex environment.

The first and major obstacle in developing the program
TTERMOP was the method of interaction to be implemerted between
connected systems. The transparent terminal mode needs to be
controlled by the user at the local NOVA terminal. Outputs to
the connected computer system are generated by entries made by
the terminal user. However, responses from the connected system
are less controlled, and, more generally, may vary from one
system to another, There may be rcsponses during the access
initiation process, after individual instructions are received,
or upon other occasions unexpected by the user. Implementation
of interrupt servicing seemed the 1logical alternative to
overcome this control problem in the most general case. This,
in turn, also lead to a problem in implementation, for
interrupts are usually serviced by the operating system for
devices known by the system, i.e., generated when the system is
initially brought up to operation., In order to use interrupts,
then, either the system generated interrupt service routines had
to be changed to allow different interrupt handling, or the
interrupts had to be removed from the purview of the operating
system and be generated by the deéeloped software, The latter
alternative was chosen, since changing the operating system
handlers was more complex and would still leave the handlers in

the system. Other wusers with other programs would not

24

necessarily find changed operating system handlers useful or
expected. As mentioned in Chapter II, the device codes to be
used for purposes of intercommunication are $TTOl and $TTII.
Both these devices and their codes are removed in the system
generated program NSYSl, Thus, development of TTERMOP was now
possible wusing defined interrupts and handlers within the
software itself.

A second obstacle existed that hindered TTERMOP
development. Even though interrupts were available to permit
servicing for the two NOVA/ECLIPSE port devices ($TTOl and

$TTI1), the program software needed to respond to both the local

terminal inputs and outputs -- interrupts that remained defincd
by the operating system -~ and the connected system inputs and
outputs - interrupts that were program defined. The

possibility existed that the program might be servicing one of
these sets of inputs/outputs, and lose inputs/outputs from the
other set. Some method of asynchronous interaction was needed
to insure both sets of inputs/outputs were equally and promptly
handled. The NOVA/ECLIPSE system has such a capability, called
multitasking (Ref 7:5-1+). Multitasking permits a single
program to contain multiple, competitive tasks. A task is a
complete, self-contained execution path through a program, which
demands system resources. In a single task environment, a
program has a single wunified paéh connecting all its program
logic, no matter how complex the 1logic branches. In a
multitask environment, a program may have two or more legically

distinct tasks, each with its own priority. Each of these

25

distinct tasks performs a specified function asynchronously and
in real-time. JIn the RDOS, the Task Scheduler allocates
central processor control to the highest priority task that is
ready to perforw its function. The wultitasking feature of the
RDOS is wused, then, to put the interrupts for the connected
system into one task for processing, while the interrrupts for
the NOVA terminal are put into a logically distinct task. To
insure the user maintains control, the task that controls the
NOVA terminal is given the higher priority.

The Actiun Files, The concept for the action file came

directly from the CDC NOS/BL PROCEDURE files (Ref 7:5-21 -
5-38). A separate action {file was conceived for particular
computer systems to be interfaced with the NOVA/ECLIPSE
computers. Fach action file contains a sequence of commands, of
which each command in the sequence instructs either the
NOVA/ECLIPSE or the connected system. These instructions serve
the same purpose as the body of the PROCEDURE file, i.e., they
provide the control statements necessary for execution of a
command . The header statement of the action file was conceived
to be essentially the same as that for the PROCEDURE file. It
contains a keyword that identifies the action file, such as
.CACT for the CYBER action file. The keyword is followed by a
command name and argument parameters. To facilitate
segregation of each sequence from tﬁo next, another keyword 1is
inserted into the file between sequences. This keyword is END..
Similarly, to denote the end of the action file, the keyword

FINISH. is used. To allow the action file to be as powerful as

26

possible, and ,hence, the interpreter as general as possible, a
method to incorporate expected system responses 1is developed.
At the beginning of each action file, the control character "1I"
must be included . It is followed by up to two separate
responses that may be expected of the system. (These responses
are used in the interpreter to detect the occurrence of system
responses and to detect the end of such responses.) Other
features of the action (files {ollow logically from the
requircments of the program MONITOR.

The Command Languape Intecrpreter Mode. The command

language interpreter is developed to serve not only as the
interpreter of the selected action files, but as the executive
for the entirc software development. As such, the program
MORITOR is the fundamental part of the software package.
Program MONITOR is developed to instruct the interactive wuser
step by step 1in the execution of the software that forms the
command language. Thus, the program first identifies itself via
a display on the user”s terminal (NOVA/ECLIPSE) and identifies
the action files that are available for selection. (Four action
files are available to the user, of which only one is totally
implemented. The others are shells that await future
completion. The complete action file 1is for the CDC CYBER
computer system, called .CACT . Two action files are for
computers that are accessible locally, even though connections
have not been attempted. They are called .DACT and .VACT . The
last action file is completely arbitrary, and is available for

any user to generate as desired. This file, called .MACT,

27

presents the ultimate in flexibility -- the creation of a
totally wuser-defined and user-nodifiable action file for any
systen.) Program MONITOR requests the user to select an action
file and then requests the user to LOGON. (Procedures for LOGON
and the other commands are contained in the MONITOR User
Manual, Appendix A.) To notify the user that a response is
required, program MONITOR provides a prompt. Program NONITOR
also screens input commauds to deterwmine if they are valid; for
example, rejecting commands not within the action file, commands
that are too long, commands that are without the necessary
arguments, and commands that contain syntax errors.

Program MONITOR was developed in a simple configuration to
expedite its implementation. In this configuration, commands
are required to be entered and followed by exactly the number of
argunents expectcd, that is, the number of arguments indicated
after the command name 1in the action file. Furthermore,
commands must be in the same order. There are no optional
arguments nor default arguments. This configuration simplifies
the decision-making of the interpreter with regard to parameter
substitution, Also, there are two control options that the user
may exercise at any time in lieu of command strings. One of
these is the entry ""T", (an up-arrow and T) which causes the
program MONITOR to relinquish control to the terminal cperation
only mode. The other option is the entry "°L", (an up-arrow
and L) which causes a return to the RDOS CLI.

A similar obstacle to that of TTERMOP hindered development

of MONITOR. This was the control of inputs and outputs of the

28

connectcd system and inputs and outputs of the NOVA/ECLIPSE,
The solution was again multitasking, with one task monitoring
NOVA/ECLIPSE input/output and the other task monitoring the
connected system”s input/output, An additional obstacle not
encountercd before concerned instructing the NOVA/ECLIPSE RDOS
from within the program MONITOR. As the program MONITOR
executes 1in RDUS already, some method to exit the program
MONITOR is needed in order to instruct RDOS via its own command
language, the CLI., It is equally necessary, howcver, to be able
to reenter MONITOR immediately after any instruction is passed
to RDOS, and to enter at the location from which the exit
occurred. One feasible means of doing this is to swap out the
program MONITOR, swap in the RDOS CLI, and then swap right bac"
to the program MONITOR., The process of swapping is available on
the NOVA/ECLIPSE system via system and/or task calls to the
opcrating system,

Swapping as implemented on the DGC system 1is a process
whereby a program is called by name into execution. The calling
program 1s swapped out of memory and the called program 1is
swapped into memory. Within the RDOS, the CLI normally operates
on what is called level zero. This 1is the highest of five
possible levels of program execution. When a typical program 1is
called 1into execution by the CLI, the program is executed on
level one. In effect, the CLI is swapped out of memory and the
executing program is swapped into memory. Going from one level
to another is essentially a stack operation, If the CLI is

executing on level zero and a program is called into execution,

29

the exccuting program is pushed onto the stack. Returning to
the CLI at the program”s conclusion 1is essentially a pop of the
stack. The latest program on the stack 1is the level being
executed. If the CLI 1is executing on level zero, it is not
possible to execute another program from the CLI without that
program starting execution at its beginning. The ability to
comaunicate with RDOS, however, can be accomplished as desired
by «calling the CLI into operation on level two. Then, when the
CL1 execution is complete, an appropriate pop of the stack will
return to the level one program. Furthermore, the return will
be to the location from which the program called the CLI into
execution on level two. Executing the CLI on level two can be
limited to a single instruction or a group of imstructions that
are passed at the time of the «call to swap to the CLI. The
process is described more completely in the RDOS Reference

Manual, Chapter 4 (Ref 7:4-2).

Develcpment of TTERMOP

As mentioned earlier, the port device codes S$STTI1 and $TTOI
were incorporated 1into the software of TTERMOP and MONITOR,
rather than leaving the operating system to define them in its
SYSGEN program. The advantage of identifying the device codes
at run time is that new interrupt handlers can be designed to
handle interrupts as desired. By doing this, any input to the
NOVA/ECLIPSE computers from the connected computer systen
generates an interrupt via device code STTIl. The interrupt

service routine essentially accepts the input and stores it in a

30

buffer for later dispo;ition. Similarly, any output from the
NOVA/ECLIPSE computers to the connected computer system
generates on interrupt via device code $TTOL. This 1interrupt
service routine simply clears the particular interrupt, allowing
the connected computer to handle the NMOVA/ECLIPSE output in its
own fashion. (It should be noted that all inpguvt and output is
limited to ASCII characters in all the software devcloped.)

Once the input from the counected computer system is
received by the NOVA (where in fact the device ports cxist) and
is stored in a buffer, a scparate section of code disposes of
the buffer itself. Two nointers are established. Oune pointer,
called INPTR, joints to the next empty location in the buffer.
The other pointer, called OUTPTE, points to the last buffer
location actually disposed of by program TTERMOP. 1If the buffer
has not been accessed by the program, OUTPTR started and remains
at the buffer”s beginning. Tf the INPTR and OUTPIR point to the
same location, the program knows that the buffer 1is "empty."
Converscly, whenever the pointers are not the same, input has
been received and storcd in the buffer. The buffer itself 1is
designed to be 132 characters long. This arbitrary length was
selected with the reasonable expectation that the buffer would
never overflow, i.e., that the INKPTR would not be 132 characters
ahead of the OUTPTR at any time. The expectation secmed
particularly reasonable when considering the 300 baud rate of
the CDC CYEER, used as the implementing connected system. This
should be the case for higher baud rates as well, particularly

1200 baud. Even at rates up to 4800 baud, the buffer should be

31

adequuate,

The section of code in program TTERMOP that 1looks at the
buffer «continually is named LINERD, and is called as a separate
task within the multitasking framework of the program TTERMOP.
LINERD has a priority of ten, whercas the main task of TTERMOP,
called TERMRD, has a priority of zero. By the conventions of
the RDOS, the task with the lower number has the higher
priority., The main task TERMRD reads input from the NOVA
terminal and transmits it directly to the connected system via
device code $TTOl. The task LINERD simply takes input from the
input buffer, and displays it te the NOVA terminal. In
operation, then, the user generates output and wusually awaits
input. Since the output program has higher priority, the user
controls the program. While the wuser awaits input, the lower
priority task LINERD seizes control of the processor to look for
that 1input. At rates up to at least 1200 baud, both tasks
appear to operate simultaneously and are in fact seizing control
on a character by character basis.

Program TTERMOP has several parts to it. The program
contains the separate, logical tasks LINERD and TERMRD. The
program also has the system calls to identify and generate
device codes STTOl and STTII. Finally, TTERMOP has the
interrupt handlers defined within its source code also.
Altogether, the program provides the necessary software to make
the NOVA/ECLIPSE user operate off of the connected system, in
particular the CYBER system, transparently. Since the majority

of the functions dealt with in this program are at the device

32

driver level, the entire source code is assembly language. A
higher-level flowchart of the program TTERMOP is not explicitly
provided. However, a flowchart for program TERMOP contained in
Appendix B is exactly the same for TTERMOP, and may be referrcd
to for information concerning TTERMOP.

Program TTERMOP is executed by entering the directory
DIALOG and typing on the NOVA terminal TTERMOP, Once a
telephone connection via a modem 1is established between the
CYBER and the NOVA/ECLIPSE, all subsequent terminal acticn is as
if the NOVA terminal were directly connected to the CYBER. All
NOVA/ECLIPSE operations are transparent to the user during the
execution of the program TTERMOP. Exit from TTERMOP may be
accomplished by typing in an up-arrow """ at any time, thus

reverting the user to the RDOS CLI.

Devclopment of the Action Files

One of the very first things considered when starting the
construction of the general purpose interface for the
NOVA/ECLIPSE computers was the minimum number of instructions
required as input by a connected computer system, in order for
that system to execute functions on its own file structure.
This minimal set of instructions formed the initizl action file
and served as a forerunner of the final product. As stated 1in
Chapter II, the CDC CYBER PROCﬂDURE files were the pattern
behind the design of the action files. Thus, the initial action
file was closely structured after the PROCEDURE file. Both

files have header statements that declare the name and arguments

33

of a particular command sequence. Both files have a body of
statements that consist of the control command sequences, and
both files have all entries arranged sequentially, This
sequential arrangemcnt is, in turn, the logical and convenient
means by which to examine the action files. Once the
interpreter sc¢lects an appropriate action file and receives a
command input, the file 1is sequentially examined from the
beginning until a command name matches the input command. Once
the match is made, each instruction within the sequence is acted
upon and executed sequentially as well. Keywords are inserted
within the action file to 1isolate 1instruction sequences and
indicate file beginning and end. Again borrowing heavily from
the PROCEDURE file, the start of each action file is simply the
file itself. The start of a particular command sequence in the
file 1is denoted by a single period appearing as the first
character in the line of the sequence, followed by a descriptor.
The descriptor for the CDC CYBER action file is the word ".CACT"
. This descriptor is followed by the name of the command
sequence and any arguments as required. The arguments are
simply a series of sharpsigns (#) and integers, which denote
the order and position of the arguments in the header
statement. (As noted earlier, position is fixed.) Each entry is
arbitrarily separated by commas. After this first line,
referred to as the action file header, is a list of command
instructions that comprise a command sequence. To delimit
individual command instruction sequences, the keyword "END." is

used. Finally, to indicate the last line in the action file,

34

the keyword "“FINI1SH." 1is inserted. Figure 1 shows a sgkeletal
outline of an action file for the CDC CYEER as presented thus

far.

.CACT, COMMANDNAMEL , #1,#2

YYYYY dummy 1nstructions that
272222 form a command sequence
END.

.CACT,COMMANDNAME no arguments

YYYYY

22222

END.

.CACT, COMMANDNAMEN, #1,#2,...,#N
YYYYY

YANAN?
END.
FINISH.

Fig 1. Skeletal Command Action File

With respect to the action file, the command language
interpreter reads the action file, matches the desired command
name, and then sends the instructions within the matched
command sequence to the connected system or to the local
NOVA/ECLIPSE system for execution. To simplify the decision
process of the interpreter, the action file 1includes control
characters within each command sequence to direct interpreter
handling. Each of these control character sets has two control
characters. For example, an instruction within the sequence

that calls for writing to the local NOVA terminal is preceded by

the control character set WL, Other examples of <control

35

character sets are WS, write to the connected system; RS, read
from the connected system; and RW, read from the 1local system
terminal and then write a single carriage return to the
connected system. Two particuiar control character sets are RC
and WC. These <character sets precede an instruction that is
directed to the HOVA/ECLIPSE RDOS. The first set results in a
disk file on the NOVA/ECLIPSE being read and copied to the
connected system. The second set results in a file being
written to the NOVA/ECLIPSE disk from information copied from
the connected system., These character sets put 1into motion a
swap to the RDOS CLI, as explained briefly in Chapter IT and

more fully described in the next section.

C THIS COMMAND PERMITS LOCAL FILES TO BE SENT
C CORRECT INPUT 1S: PUT,LFN,SFN,ID,SFPASSWRD
CACT,PUT, #1,#2,#3, #4

Ws COPYBF, INPUT,ZQY

ViC XFER/A #1 QQVV/R

WS %EOF

WS REWIND, ZQY

WS REQUEST, ZQZ,*PF

WS COPYBF,ZQY,ZQZ

WS CATALOG,ZQZ,#2,1ID=#3,RP=999, PW=#4

WS RETURN, ZQZ,ZQY

END.

C THIS COMMAND RECEIVES SYSTEM FILES

C CORRECT INPUT 1IS: GET,SFN,ID,SFPASSWRD,LFN
+CACT,GET, #1,#2,#3,#4

Ws ATTACH,QZQ,#1,ID=#2,PW=#3

RR

WS COPYSBF,QZQ,0UTPUT

RC XFER/A VVQQ #4/R

WS RETURN,QZQ

END.

Fig 2. Sample from CYBER Action File

36

p— . . B

An exarple portion of the final CYBER action file 1is
illustrated 1in Figure 2. The first command name shown is PUT.
This command takes a disk file resident on the NOVA/ECL1PSE
system and transfers the file to permanent storage on the CDC
CYBER system. The command name PUT is preceded by the keyword
.CACT and followed by the place holders for four arguments,
Therefore, the PUT command rcquires four arguments. In order,
these argumcnts must be the 1local file name (including any
directory specifiers) of the NOVA/ECLIPSE disk file, the system
file name to be wused on the CYBER, the user identification
number or problem number the file is to be stored under, and the
CYBER syst m passwords. (Since each argument DHarareter is
required, a paramcter must be used for the password. 1In this
case, and only in this «case, a zero entry may be used to
indicate no password.) The firsi instruction in the PUT command
sequence is preceded by WS, and, as with all instructions,
arbitrarily starts 1in column nine. Thus, the instruction
consisting of the string -- COPYBF,INPUT,ZQY -- is to be sent to
the CYBER. The mnext command in the sequence is preceded by WC.
This means that the file with the name entered in the position
of argument one 1is to be copied from the NOVA/ECLIPSE disk to
the CYBER system. All the rest of the commands in the sequence
are preceded by WS, and explicitly instruct the CYBER to store
the transferred file into permancnt file storage, the user input
arguments having been substituted for the argument parameters
within the action file by manipulation of the interpreter. The

command sequence terminates with END.

37

The second command name shown is GET. This command takes a
file in permanent storage on the CYBER and transfers the file
to the NCUVA/ECLIPSE disk. The command GET is also preceded by
the keyword .CACT and followed by the placeholders for four
arguments. The treatment of these four arguments is exactly the
same as that for PUT, with the order and position strictly
observed. Hence, the arguments in order must be the system file
name, the user identification number, the system file password,
and the local file name. The commands in the sequence preceded
by WS are handled exactly as described for PUT above. A blank
comménd line is preceded by the control character set RR, which
is sufficient to tell the interpreter that the local
NOVA/ECLIPSE needs to ready itself for a read from the CYBER.
Essentially, the character set RR activates a subroutine to
create a temporary file that will subsequently be written into,
when the next instruction in the action file preceded by RC is
executed. The command line preceded by RC is just the converse
of the command line preceded by WC., In this case, file transfer
takes place from the CYBER to the NOVA/ECLIPSE. Again, the
command sequence is terminated by the keyword END,

Finally, single control characters are used outside of the
command sequence, The control character C, for example,
indicates that the remainder of the line is a comment that the
interpreter may ignore. (There is. one other single control
character -- I -- wused elsewhere in the action file. It
indicates that up to two responses of the connected system may

follow. Even if no responses are expected nor entered, the

38

B

control <character I must be in the action file as the

interpreter always looks for it.)

Development of MONITOR

Program MONITOR is the largest software partition utilized
in interfacing the NOVA/ECLIPSE computers to other connected
computer systems. MONITOR serves as the basic command string
interpreter of the action files discussed previously, and acts
as the executive to control functional 1interactions of all
subroutines and any tasks., There are two tasks that execute
asynchronously within MONITOR. The main task is the
interpreter/executive program MONITOR, and the other task is
called SYSIN, for system input. This latter task continually
monitors and seeks any input from the connected system. In
fact, SYSIN 1is an extension to TTERMOP, doing all the same

functions of TTERMOP, plus others to be developed below.

The MONITOR Task. In the mnarrowest focus, the program
MONITOR reads the action file selected by a user, and, upon
matching the desired command name and related command sequence,
sends the command sequence lines to the connected computer
system or to the NOVA/ECLIPSE RDOS. In order to interpret the
action file, the file itself has to be read into storage. The
simplest method to accomplish this 1is to use FORTRAN read
statemeats that store the file in a one-dimensional array, one
line at a time. As the action files are exclusively ASCII, the
A format specification is used in the READ statements. As each

line 1is read into the array, the keywords or control characters

39

are examined to determine further actions. Prior to taking any
of these further actions, the arguments must be resolved.

A typical coumand instructioun within the command language
may include no arguments or up to four arguments. Argument
substitution then allows the wuser flexibility in selecting
argumcnts to be used with any particular action file. The
method of argument substitution developed 1s simplc and procceds
as f{ollows. A command string consists of a commznd name
optionally followed by arguments., Each argument of a command
string 1s entered secquentially after the command instruction
name. The command and arguments are separated either hy commas
or blanks, where two blanks or two commas togethcr indicate a
null argument. Order mnmust be fixed, and is determined by the
action file. An easy way to identify the arguments in tle
action file is to number them sequentially, using the sharpsign
as an indicator. For example, argument two is denoted #2 and
argument x is denoted fx. Not all command sequence instructions
within the action file contain argument parametcrs. In fact,
there are certain sequences that may be checked, while the
others may be ignored for this purpose. The intcerpreter,
therefore, checks all command sequence instructions that are
preccded by the <control <character set in which the second
character 1is either an "S" or a "C" . In these instances, the
process of argument substitution is four-fold. First of all,
the array containing the command sequence line is checked to
determine if any sharpsigns exist. If not, the argument

substitution process ceases. If a gharpsign exists, the array

40

———

is collapsed about the sharpsign, i.e., the sharpsign and its
corresponding number are removed {rom the array. Next, in the
same location where the sharpsign and number were, the array 1is
expanded to the size of the argument entered by the uscr. Once

this step is complete, spaces exist where the sharpsign and

nunber used to be. Ir the last step of the substitution
procedure, these spaces are replaced by the argument, This
four-fold process is then repeated wuntil all argument

placeholders iu any particular cowmand sequence line have been
substituted with actual arguments. Several error checking
procedurcs are in effect prior to and throughout this process.
If an argument is too long {(maximum length 40 characters) or if
arguments supplied by the wuser Jdo mnot match exactly the
arguments expected by the action {file, error messages are
provided to the user,

Once arguments are resolved in any command sequence
instruction, the control characters dictate what action the
interpreter is to take next. Each action is supported by one or
more subroutines that program MONITOR calls into execution. For
example, in the command PUT, one of the command sequence
instructions is preceded by the control character set WS, Upon
resolving the arguments in this instruction, the program MONITOR
calls FORTRAN subroutine WRITSYSTM to implement the action of
writing the instruction to the congected system, WRITSYSTM 1is
really just a transition subroutine that smooths the transfer
from the FORTRAN program MONITOR to the assembly language

program WRSYS, a subroutine called by WRITSYSTM. WRSYS actually

41

docs the work of travsmitting the conniand instruction to the
convected systen. The transfer 1s made character by character.
Several other subroutines parallel these two. For a control
character set of BW (read frow the local system and write a
carriage return to the connected system), the interpreter calls
FOKTRAL subroutine REALLWRITS, which transitions to the assembly
language routine RDAWR, For a contrcl character set of WL
(write to the loczl terminal), program MONITOR calls FORTRAN
subroutine WRITLOCAL, which does not call any other routiunes.
The controul character set RR (rcady the NOVA/ECLIPSE for a
subsequent read that will take place), causes the interpreter to
call VFORTPRAN subroutine READYRFAD. READYREAD simply creates a
file to be used as temporary storage fcr the nformation that
will subscquently be copied from the connected system. Two
otlier control character sets are similar, though converses of
each other. The set WC (write a copy of a NOVA/ECLIPSE disk
file to the connected system) prompts program MONITOR to call
FORTRAN subroutine SENDFILE. SENDFILE serves primarily as a
transition routine and, secondarily, as a mini-executive of the
actions nccessary for such a transfer. SENDFILE calls assembly
language subroutines EXCLI and GETFILE. Program EXCLI is called
to execute the RDOS CLI on level two by swapping the CLI in and
the program EXCLT (or effectively MONITOR) out of memory.
During the swap, the instruction contained in the
one~dimensional action file array (called IACTFILE) is sent to
the RDOS. Upon return from the swap, program GETFILE is called.

This program actually gets the disk file that 1is to be

42

transmitted and outputs the entire contents of the file
character by character to the connected system. The converse
of the character set WC is RC (read a copy of a connected system
file and store on the NOVA/ECLIPSE). The interpreter responds
to the control character set RC vy calling FORTRAN subroutine
RECEVF1LL, Like SENDFILE, RECFVFILE also <calls assembly
language routine EXCLI in order to send instructions to the
RDOS. Because of the structure of SYSIN, described below, the
information from the connected system has already been received
and stored in a temporary file. Thus, execution of EXCLI at
this time simply transfers the input file from this temporary
disk storage to the file location input by the wuser as an
argument.

The remezining programs called by MONITOR are mcre a part of
its executive functions, rather than interpretive functions.
Two programs that blur this distinction somewhat are GETRSPS
and CNVET. FORTRAN program GETRSPS 1is called by MONITOR shortly
after initiation, yet subsequent to wuser selection of the
desired action file. This program reads the action file
selected, looking for control character I (mentioned earlier).
Entries in the action file after this character are initial
responses (up to two) that may be expected from the connected
system during interconnection. For example, in the CYBER action
file the entry in the 1line after <control character I is
"COMMAND-,.." . The comma serves as a separator, indicating two
possible responses that may be expected from the CYBER during

interconnection with the NOVA/ECLIPSE., The first response 1is

43

"CoMMAND=" and the sccond response is ".." . GLTRSPS siumply

gets these responses, if any, from the selected action file and
stores them 1in arrays. Upon return from GETRSPS, MONITOR
immediately calls assembly language routine CHVRT. The sole
functien of CHVRT 1s to convert the FORTRAN array storage of
GETRSPS into assembly language storage. For example, the ASCII
character "A" is stored in the FORTRAL array as two bytes in one
16 bit word, of which the octal representation is <101><40>,
The same character 1s stored in assembly language as <0><101>.
The diffcrence between these two stems from the difference
between the FORTRAN A forwmat specification used in reading 1in
the array and the assembly language construction that does not
use special formating. In esscnce, the FORTRAN read statement
puts a sinple character into one word, the left byte the actual
ASCI1 charucter code and the right byte a space. Assembly
language looks at bytes only. Thus, a 16 bit word will have a
null in the left byte and the actual ASCII representation in the
right byte. CNVRT then stores the needed character
representation of the responses and their size in buffers that
are used by subsequent programs to assist the interpreter 1in
detecting responses from the connected system and determining
whether or not they“re expected.

Those programs that are purely.executive are the programs
BGIN, PROMPT, REVERT, and TOTERM. Each of these carries out a
specific function that neceds to be accomplished to help

integrate the various modules of MONITOR into a working whole.

BGIN simply opens channels to the 1local NOVA/ECLIPSE terminal

44

- —— ¥

input and output device codes —-- $TT1 and $TTO -- respectively.
PKOMPT provides prompt character ">" to the wuser”s terminal
whenever called. The program REVERT is selected by the user as
an option in lieu of a command string. By entering the string
"*L"™ , the user instructs the interpreter to return to the RDOS
CLI. REVERT simply exccutes the return to the CLI. The wuser
also has the option of entering the string ""T" . This string
instructs the intcrpreter to go to the terminal operation only
mode. In essence, the program TTERMOP 1s called, although as a
subroutine it is slightly modified and renamecd TERMOP, MONITOR
actually «calls TOTERM, which first removes the previously
defined device codes $TTOL and $TT1l, and then <calls TERMOP,
Appendix B contains a flowchart description of program MOWITOR
and its various modules.
The SYSIN Tack. As each of the interpretive and executive
functions of MORITOR are being executed, a separate task is also
called into executicen by MONITOR., Using a DGC FORTRAN version
task call, program SYSIN is activated at the Dbeginning of
program MONITOR. SYSIN is given a priority of one, while
MORITOR is automatically assigned a priority of zero. In
kecping with the RDOS conventions, MONITOR has the higher
priority.

SYSIK has four basic actions to accomplish. First, when
SYSIN is initially called, it identifies and defines the needed
device codes $TTOl and $TTIl. The remaining three actions occur

as the processor schedules the task itself. The first action

taken by SYSIN is to continually check the input buffer that may

45

have been receiving data from the connected system. Any data
reccived 1s put into another ©buffer, called MATBUFR, for
matching purposes. Next, the program SYSIN comparvs the data
put into the match huffer with the expected responses from the
connected system. (These responses were stored in retricvable
locations by program CRVRT.) If the responses arec as expected,
the match buffer is cleared and new information is entered into
it. If the responses are not expected, SYSIN displays them on
the NOVA terminal for the user to see. Finaily, SYSIN always
checks to see if a temporary disk storage file has been created
by the program READYREAD. If no such file 1is <created, then
SYSIN does nothing extra and returns to repealt the other
actions. If the file has been <c¢reated, however, then SYSIN
wvrites the information 1in the wmatch buffer into the temporary
disk file as well, Thus, SYSIN creates the device interrupt
routines for device <codes/ports S$STTOl and $TTIl, monitors the
input buffer, detects and appropriately displays responses froun
the connected system, and writes to a temporary disk file when
such a file exists. Flowcharts that describe SYSIN are also
contained in Appendix B.

Handshaking Conventions. Because of peculiarities in the
RDOS with regard to its scheduling of user created tasks and
because of the relatively slow response from the connected
computer system (currently operating at 300 baud), several
handshaking <conventions available via task calls have been
utilized throughout the program MONITOR. Basically, whencver an

instruction has been sent to the connected computer system by

46

any routine or subroutine of the command language, the main task
MONITOR is suspended., The main task remains suspended until the
secondary task SYSIN rcadies the MONITOR. SYSIN readies MONITOR
after any response from the connected system or after a built-in
time delay has been exceceded. The asynchronous nature of the
two tasks is affected by this implementation, but only aftecr a
suspension of the main task. Both tasks remain independent and
asynchronous when both are active, The handshaking permits the
user to control events through the interpreter, as MONITOR 1is
the task that the user communicates with, This handshaking and
the relationship of all programs that constitute the command
language are presented graphically in Figure 3. Fach assembly
language program depicted is given the file name extension .SR,
while each FORTRAN program is given the file name extension .FR.
All the programs shown in the figure are loaded together and
executed wunder the file name MONITOR.SV. The mechanics of the

loading and execution are briefly discussed in Appendix C.

47

SYSIN.SR

MONITOR.FR

READYREAD.f;~

PROMPT.SR

WRITLOCAL.FR

BGIN.SR

RDAWR. SK

é_____._

T e ey

READLVRITS.FR

WRITSYSTH.FR

GETRSPS.FR

SENDFILE.FR

RECEVFILE.FR

]
I
k WRSYS.SR
' i
N 1
i
GETFILE.SR
EXCLI.SR
13
!
|
__7L___

CHVRT.SR

et e e e

REVERT.SR

CLI

indicates task interaction
indicates subroutine cail and return
indicates subroutine call and no return

Fig 3.

Program MONITOR Structure Chart

48

TOTERM.SR

1

TERMOP.SR

— - L T .

JV. Validation
The general purpose command language was constructed in a
modular manner from the top down. The initial program devloped
and tested was the main task MONITOR. Until other nceded
modules were completely developed, stubs were created and used
to interact with the main task. Tasking itself was not needed

and was not introduced wuntil the <software effort was fifty

percent complete. The remainder of this chapter discuss the
testing and validstion efforts with respect to the «¢. .and
language development and construction. The fiist section

discusses efforts during the development, while <the second

section diccusses efforts once a workable product was p- ~ducel.

During Development

Every effort was made during development to completely test
and debug modules as they were created and modified. Most of
the modules were short and uncomplicated, enabling repeated
assembling and 1loading without extensive time delays. Those
modules that were more unwieldly, such as SYSIN and MONITOR,
were developed and tested in stages. A tool frequently used to
great advantage was the DGC RDOS Symbolic Debugger. The
debugger saved many manhours in tracking down sporadically
appearing errors. Perhaps the main feature of the debugger that
permitted this savings was the ability to set brecakpoints and

execute up to these breakpoints,

49

Many trial modules were created in the project”s beginning
to test system <calls, FORTRAN calls, and subroutine
interactions, A significant amount of time was spent trying to
integrate FORTRAN programs with assembly language programs. In
this regard, several small scale FORTRAN programs and their
called FORTRAN subroutines were created and compiled. The
NOVA/ECLIPSE RDOS requires each distinct routin= or subroutine
to be separately compiled or assembled. Because of this,

compiled FORTRAN programs produce an optional assembly language

file. These files were examined repeatedly to determine the
exact relationship between FORTRAN and assembly language
programs. Essentially, the assembly language routines require

calls to specific FORTRAN runtime library routines at the
program beginning and end. These library routines initialize
variables and organize stacks automatically, thereby enabling
communication and interaction from a FORTRAN module to an
assembly language module. Another complication was establishing
the FORTRAN address locations for compiler generated and
temporary variables within the assembly language routines.
This is always accomplished at the end of an assembly language
subroutine by setting the variables wused in the assembly
language program to FORTRAN address locations expected by the
FORTRAN main module. FORTRAN calls to KDOS routines and system
calls within assembly language routines also required repeated
examination and trials to determine their effects, Once
familiar, these types of <calls proved quite powerful and

convenient. It should be noted, however, that complications can

and did arisce when mixing user defined operations that executed
in user space with system calls that executed in system space.
In fact, system <calls <cannot be usced at all in user defined
interrupt scrvice routines, Finally, extra code was used
regularly to provide messages to the user terminal regarding
decision points encountered and overcone, For example, the
one-dimention: 1 array IACTFILE that contained the command
sequence instruction from the action file was repeatedly
displayed on the ‘terminal screen throughout the argument
substitution piocess. This provided <c¢lear and immediate
feedback as to the program”s progress and correctness during
execution.

No computer link was available for testing the interfacing
programs until late in the development, nor was it needed until
late in the development. Initially, therefore, a simple line
printer was connected to the input and output ports of the
NOVA/ECLIPSE. Farly programs were tcsted by writing to this
printer and ignoring 1inputs (since there were none). About
halfway through the development, the printer was replaced by a
separate terminal. Later versions of the interfacing programs
provided for writing to this terminal and reading from this
terminal. Thus, two~way communication was established. The
program TTERMOP was essentially proofed 1in this testing
configuration, since computer to computer dialog for this
program was easily simulated. Interrupts were generated and
serviced, and responses were user-simulated as if the terminal

that was connected to the access ports of the NOVA/ECLIPSE was

51

indeed the CYBER computer. During this entire period of time,
no major attempt was made to streamline or enhance coded
procedures. The first goal was to make the program execcute

successfully,

After Development

Once the programs were complete and individually tested in
the terminal to terminal environment, the emphasis shifted to
integrated program validation. All independent aspects of the
individual modules were correctly compiled, assembled, and
loaded togecther without any explicit errors discerned by the
RDOS. DBy this same time, all stubs had been replaced by working
routines and the intial refinements had been made. At this same
time, the telephone link to the local CDC CYBER computer system
was installed. Initial attempts to interconnect the
NOVA/ECLIPSE computers to the CYBER system failed due to pin
mismatches in the RS-232 connectors. Once these pin connections
were changed, computer interconnection was achieved. Program
TTERMOP worked well almost immediately, only requiring
modifications that eliminated sections of code that simulated
modem functions for operation in the terminal to terminal mode.
Program MONITOR had more severe problems, revolving around
handshaking considerations for the multiple tasks in the command
language intcrpreter. These problems were most difficult to
isolate for two reasons. First, the debugger was limited to
setting breakpoints only within a single task. That is, if

breakpoints were set in each task, the debugger would halt at

52

the first breakpoint encountered in either task and would
remain in that task. The other task was not visible through
the debugger in this instance. The second reason quickly
overshadowed the first recason. The debugger, and in fact the
entire DMONITOR program would not execute at all once the entire
program was loaded together. The debugger and all other
programs loaded without error, but a FORTRAN runtime error
indicating a stack overflow resulted whenever an attempt was
made to exccute the complete program. It appears that resident
memory 1is too small to handle the execution of the integrated
program with the debugger. Nonctheless, the handshakiug
problems were <corrected by wusing task calls to appropriately
suspend and ready the main task, which allowed the sccondary
task to seize control of the processor as desired.

Repeated failure of the program SYSIN to suppress displays
of expected responses from the CYBER computer system lead to the
discovery of another problem. The CYBER terminal sends out
sequences of null characters at various times. These nulls are
accepted in the input buffer, but are not visible to the
terminal wuser,. Even so, they cause the matching routine of
SYSIN to give erroneous results. The solution 1is simply to
discard all nulls received by the NOVA/ECLIPSE. This corrected
the problem of detecting and suppressing expected responses from
the connected CYBER system.

Early attempts to execute commands of the developed command
language were intermittently successful. Numerous minor changes

were made to the action files to —correct command sequences,

53

syntax, and spacing. To save some time and preclude potential
problems, the interpreter was modified so as to send only the
exact number of <characters comprising a command instruction.
Prior to this modification, an entire record line of &0
characters was sent, even if the command string was less than 80
characters. As these changes were made, the program became
progressively more reliable,.

File transfers have been accomplished and the files have
been checked for completeness and wuniformity. Files are
transferred as expected with one exception. Files reccived
from the CDC CYBER system have aun extra carriage return attached
at the file beginning and end. These can easily be rcmoved
using the text editor. Also, there were occassions when a file
would be transmitted to the CYBER system from the NOVA/ECLIPSE,
but upon completion of the transmission, the KOVA computer would
hang up about location 12 (octal). The problem was
intermittent, and could not always be duplicated. Nevertheless,
files with 1less than 20 bytes of information and files with
upwards of 35,000 bytes of information have been successfully

and repeatedly transferred both ways without program failure.

54

V. Conclusions and Recormendations

A general purposc command language for computer to computer
dialog has becn designed, developed, and implemented. The
cormand language, called MONTITOR, mects the basic constraints
that werce established when the problem was defined. The
program 1s flexible, which allows the sawe software to be used
for wmore than one connected couputer system to the NOVA/ECLIFPSE
conputers. However, until another system other than the CDC
CYBER 1is actually interconnected and used, the degree of
flexibility 1is speculstive and subieclive, The command
language 1is general, to the degree that 1t seems reasonable to
be able to implement MONITOK on another system cother than the
NOVA/ECLIPSE, with somc¢ mwmodifications. The assembly language
routines must be fitted to the asscmbler to be wused, and the
interaction between the TORTRAN and the assembly language
routines may require changes. Only a test will demonstrate the
real generality of this programming. The <concept and overall
structure, howvever, seem most feasible. The interpreter is the
basic entity and should remain static in most cascs. The action
files are system dependent, and they are dynamic by design.
Thus, the remainder of this chapter will cover the conclusions

and recommenlations regarding this project.

55

conclusions

The general purpose command language works well overall.
There are a variety of available commands and all have been
successfully implemented. ASCII files have been transferred to
and from the NOVA/ECLIPSE repeatedly, files have been printed
on the CYBER printer, and files have been punched on the CYBER
punch.

The command language 1is easy to use, simply defined, and
brief. There are just a few commands, although more can be
added or deleted. With these limited commands, much work canmn be
accomplished. The wuser need enter a limited number of words
only, and is relieved of the tedium of repeated entries. Fewer
comrands encourage use; simple commands encourage use.

The command language 1is not as universal as conceivable.
Commands are structured to fit the environment in which they
are to be used, limiting their universality somewhat. Commands
are restricted to size, the number of arguments possible, and
the order and position of arguments are fixed.

The program is relatively slow executing. Much of this 1is
due to the handshaking that has been used.

The program is not as efficient as it could be with some
design changes. The handshaking has circumvented the
independence and asynchronization of some of the multitasking
features of the operating system. Swapping takes place although

some other means to avoid swapping may exist.

56

////

Finally, the programs are structurcd modularly, lending to

ease of wodification, rcadability, and understanding.

Recommendations
The following recommendations are presented to indica
Ttructed

areas in which the general pupose command language co

may be ilmproved and enhanced. Some of theeconmmendations
follow 1logically from the conclusionsg#Tcsented above. Other
reconmendations are just observa ns and suggestions that have

accumulated over the tipge

is presented ii/ihgzﬁépe that it will either lead to follow-on

of the projcct. Each recommendztion

project oppzf%unities or a better understanding of the project
7
as 3 ;lo.
The current structure and content of the general purpose
language 1s not necessarily the most efficient nor the most
effective. There are several assembly language routines that
might readily be convertible to FORTRAN, and several f{easturcs
that have been implemented might be simplified. lLogical
candidates for simplification are the routines EXCLI and SYSIN.
There may be a more straightforward way to 1interact with the
RDOS {rom the cowmand language itself, for example.

Much more flexibility could be built into the cecnuand
language with respect to the functioning of commands. For
example, the commands need not be limited to simple comwmand
strings. Perhaps global and 1local switches could be introduced

to increase the power of the command instructions themselves.

Further, argument defaults and optional arguments would

57

cortaéﬂﬁsfimpruvo the power of the language.

The current software has no convenient means to internally
adapt to connected systems that are full-duplex. All the source
code has been written with a half-duplex link in wind. An
internal flag or switch to appropriately seclcct code for either
haif-dvplex or full-duplex operation would certainly increase
the universality of the software.

Current implementation of the MONITOR command Tlangucge 1is
limited to ASCII file tronsfcers only, FExpanding the capability
to handle binary files would be most wuscful, especially in
support of the digital signal processing demands.

With the language 1iwplemented as It is, access 1s now
available to another computer system for dialog from the
NOVA/FECLIPSE. Devising a mcthod of access to the NOVA/ECLIPSE
from the other computer system would open new avenues of dialog
between computers.

More sophisticated command languages often implement
pipelining, i.e., stringing command 1instructicns sequentially
for sequcntial execution. Implementing pipelining within
MONITOR would provide a terse language of greater power and
convenience.

MONITOR lends itself to coding in a high-level structured
language. Several advantages may be gained by redesigning
MONITOR in DPASCAL, for cxample; Data structure and file
structure manipulations might be greatly simplified and

facilitate greater creativity in developing command sequences.

58

10.

11.

12,

Pibliorraphy

Abraws, M., R. P. Blanc, and TI. W. Cotton. Conputer

Networks: Test ond References for a Tutorial (Revisced

Editien)., JH3100-5C. TLEE Computer Society, October 1975.

Anderson, G. A, oand D, b, Jensen, YComputer
Interconnection Structurcs: Taxonomy, Characteristics, and
Exauples,'" Conputing Survevs, 7: 197-213 (December 15%75).
Bales, M., W. Bouman, D. Fisher, and P. Gruber.
Man-Machine Interface/Intelligent Terminal Study Revport.
DT1C ADL-REG27 3451 Commiand and Control lecchnical Center,
Washington, D.C.: 30 January 1973.

T
Y

Carter, Benjamin F.o, TII. A Special Purpese Corputer to
Computer Interface. MS& Thecis. Ames, Jowa: Towe State

University, 1975,

Martin, J. Design of Man Computer Dieclogpues. Enyplewood
Cliffs: Prentice-Hall, Tnc., 1973.

MeIlroy, M. D., E. N. Pinson, and 3. A. Tague. "URNIX
Time-Shariny System: Forvward," The Bell Svstea Technical

Journal, 57 (6) TPart Il: 1899-1904 (JUly-ALbU.t 1978).

Netvork Opersting Svstem/Batch Environment (NCS/LE) Version
1 Reference ﬂgppaL. 60493800, Revision H. Control Data
Corporation (CDC) Computer Systeme, St. Paul, Minnesota,
19769.

Ravenscroft, Donald L. Flectrical Encincering Digital
Design Laboratory Communication Netwverk. MS Thesis.
Wright-Patlerson AF3B, Ohio: Air Yorce Institute of

Technology, December 1978.

Real-Time Disk Operoting System (RDOS) Referenmce larual.
093-000075-086. Lbata General Corporation (DGC), Westboro,
lassachusetts, 1979,

Rinder, R. "The Irput/Output Architecture of
Minicomputers," Datamation, 16: 119-124 (May 1970).
Ritchie, D. M. and X. Thompsen. "The UNIX Time-Sharing
System," The Bell System Technical Journal, 57 (6) Fart II:
1905-1929 (July-August 1978).

Russo, P. M. "Interprocessor Communication for
Multi-Microcomputer Systems,"” Computer, 10: 67-76 (April

1977).

59

Appendin A

MONITOR User Mnoual

60

Introduction

How to Access/Use

.

MONITOR

Original Commands Available

PUT .
GET .
SPRINT
SPUNCH
DELLTE
FILES

PrILES
LOGON

LOGOFT
LPRINT
LPUNCH
SBATCH
LBATCH

Error Handling

Connected Computer System Errors
NOVA/LCLIPSL RDOS Errors
MONITOR Exccutive Function Errors

MONTTOR

CYBER Action Tile Design

Summary .

.

Intcrpreter Errors

-

.

61l

.

Page

62
64
68

68
68
638

69
69
69
69
69
69
69
69
70

71
71
71
72
73
75

80

Program MONITCR is a general purpose command language that
may be used for computer to computer dialog. The MONITOR
software resides within the Data General Corporation (DGC)
NOVA/ECLIPSE computer systeu, By calling wupon particularly
designed action files, MONITOR enables a user to
intercommunicate with various computer systems that are linked
to the NOVA/ECLIPSE via a standard RS5-232 modem connection. The
input/output ports for the NOVA/ECLIPSE are called device codes
STTT1 and $TTOl, respectively. These ports are on the NOVA 2/10
computer only. However, since the NOVA 2/10 ard ECLIPSE §/250
share a ten megabyte disk via the DGC Real-Time Disk Operating
System (RDOS), access to the ECLIPSE may also be gaincd through
the NOVA by appropriate operating system instructions.

The user desiring to utilize MONITOR may use a NOVA video
display terminal within the Air Force Institute of Technology
(AFIT) GElectrical Fngincering department’s Digital Signal
Processing Laboratory. This wuser manual will describe the
access procedures, the commands available for use, the errors
that may be encountered, and the pavticular design of an action
file.

Though the command language MONITOR was designed to be used
with different connected computer systems, only the locally
accessible Control Data Corporation (CDC) CYBER computer system
has actually been interconnected. Thus, all examples and

specifics will refer to this interconnection throughout the

62

manual, A general extcnsion

relatively straightforward.

63

to

other

computer

systems

i

2. How to Acccss/Use MONITOR
The executable software package that enables computer to
computer dialog via the NOVA/ECLIPSE computers is the binary
save file MONITOR.SV. This file is composed of several FORTRAN
language and assembly language source routines that are loaded
together to form MONITOR.SV. The main partition of the entire
software package 1is the FORTRAN source program MONITOR.FR, which
forms the basic cowvmand language interpreter and executive for
the command language. (Unless otherwise stated hereafter, the
term MONITOR will refer to the binary save file MCNITOR.SV.)

The software for MONITOR resides wupon the NOVA/ECLIPSE
disk, specifically the NOVA disk platter. The directory under
which MONITOR is stored is named DIALOG,., Therefore, to access
MONITOR, the wuser must enter the directory DIALOG. The
appropriatc command by which to enter the directory from any
other directory is:

DIR DPOF:DIALOG

Once the user has entered the directory DIALOG, the user 1is
ready to execute the command language. The simple entry

MONITOR
will call the binary save file MONITOR.SV into execution. The
user will next see the following .display upon the terminal

screen:

64

The MONITOR program you have entered provides
intercommunication between the NOVA/ECLIPSL computer
system and your choice of another system.

Please enter the digit opposite the action file
you desire to use:

1 -~ CDC CYBRER
2 -~ DEC 10
3 ~- VAX 11/780
4 -- Your own
>
The character ">" 1is a prompt that eignals the user to make an

entry. In the above instance, an entry of 1 would seclect the
CDC CYDER action file, a 2 the DEC 10 action file, a 3 the VAX
11/780 action file, and a 4 an action file developed and coded
by the wuser. (Originally, only the CDC CYBER action file was
developcd. Thus, the other zction files existed, but had no
useful entries. Effectively, these other files contained no
commands and always returned an error condition if commands were
attempted from them.) Entry of a number other than those
indicated causes an error message as follows:

You have entered an illegal number. Try again!

>
The user 1s again at the initial starting point.

Once the wuser has entered a selected integer, such as 1,

the following type of message is displayed:

65

You have sclected the CYBER.

Thank you. Please enter a command.

>
At this point, all prelimirary initializations of the program
have taken place. The wucer 1s now rcady to enter a specific
comnand from the available comwauds contained within the
selected action file, or two additional commands not contained
within the action file.

The two commands not contained within any action file are a
command that reverts the user back to the RDOS Command Language
Interpreter (CLT) and a command that calls the terminal only
mode of operation -- program TERINOP -- into execution. The two
cormands are:

“L - revert to local CLI

“T =~ change to tcrminal only mode
The next display a user sees upon entry of "L is:

You have returned to the local CLI mode.

R

The "R" is the RDOS CLI prompt. The next display a user sees

upon entry of “T is:

You have entered into the terminal only mode. Proceed!
The user”s terminal is now connected as a transparent terwinal
to the computer system selected, such as the CYBER. To exit
this mode and return to the MONITOR mode requires the wuser to
enter an up-arrow """, which returns the user to the RDOS CLI,

and then to enter MONITOR and repeat the sequences described

above.

66

¥ -

All other permissible entries are contained in the action
file. To see a complete list of these commands, see the action
file 1itself. The next chapter describes the original commands
developed and implemented within the CDC CYBER action file. As
action files are designed to change, however, the user must look
at the current action file to find the —current status of

commands.,

67

3. Origina} Copmands Avoilable
The original commands developed specifically for the CDC
CYBER action file are listed and briefly described below. These
commands (namcs) may be wused in other action files, provided
command sequences contained in the action files are
appropriately designed and controlled. Sce Chapter 5 for a
discussion of the design and structure of a particular action

file.

PUT,LFN,SFN,ID,SFPASSWRD

This command selects a local file name (LYN) from the
NOVA/ECLIPSE disk and transfers the file to the connccted
computer system, The transferred file 1is stored
permanently under a system file name (SFN) with an
identification (ID) aud system file password (SFPASSWRD)
supplied by the user.

GET,SFN, ID,SFPASSWKD,LFN

This cormand selects a SFN stored on the connected computer
gystem and transfers the file to the NOVA/ECLIPSE disk with
the LFN input. The user supplies the ID and SFPASSWRD for
the SFN.

SPRINT,SFN,SFPASSWRD
This command selects the SFN with appropriate SFPASSWRD on

the connected computer system and prints the file out on
the connected system printer.

SPUNCH,SFN,SFPASSWRD
This command selects the SFN with appropriate SFPASSWKRD on

the connected computer system and punches the file out in
Hollerith code on the system card punch,

68

DELETE,SFN,SFPASSWRD
This command deletes/purges the permanent file on the
connected couputer system with the SFN and SFPASSWRD input,

FILES
This command causes the connected system to display local
files in use.

PFILES
This command causes the connected system to display the
permanent files in use for the ID supplied.

LOGON,USER 1D,USER PASSWRD
This command initiates access to the connccted system. The
user must supply the specific ID and protected password
(USER PASSWRD).

LOGOFF

This coumand terminates access to the cconnected system,

LPRINT,LFN
This command selects the . N on tne NOVA/ECLIPSE and prints
the file out on the connected system printer.
LPUNCH,LFN
This cormmand selects the LFN on the NOVA/ECLIPSE and
punches the file out in Hollerith <¢ode on the connected
system card punch.
SBATCH,SFN,SFPASSWRD,DISPOSITION,TERMINAL ID
This command selects the SFN with appropriate SFPASSWRD for
execution on the connected system in the batch mode. The

output of the file (DISPOSITION) and location (TERMINAL ID)
are supplied by the user.

69

LBATCH,LFN,DISPOSITION, TERMINAL ID

This command sclects the LFN on the MNOVA/ECLIPSE for
execution on the connected system in the batch mode. The
DISPOSITION and TERMINAL TD are supplied by the user,

70

4

. FError Handling

There are four general types of errors that may occur in

execution of the program MOKITOR,

errors, (b) exccutive function errors,

There are (a) interpreter

(¢) NOVA/ECLIPSE RDOS

errors, and (d) connccted computer system errors. The first two

types are errors that arisc within the
NOVA/ECLIPSE RDOS crrors occur whenever

error condition, and the last typec

operating system crror conditions gencr

computer system.

Connected Conmputer Svstem Erroers.

display error conditions gencrated by

HONITOR software itself,
the RDOS geucrates an
of errors results from

ated by the connected

MONTTOR was designed to

the connected conmputer

system to the user. Each action file rescrves a location after

the control character "I" for up to two cxpected responses from

the connccted system. Any response not matching these expected

responses is displayed to the user. hus, any erior conditions

of the connected computer system are simply passed to the user

for action. Most of these error conditions are non-fatal and

do nc* causc HONITOR to fail. However, unexpected results may

arise if error conditions are encountered.

NOVA/FCLIPSE RDOS FErrors. MONITOR executes within the

direct control of the RDOS., Error conditions generated by the

RDOS may be displayed to the user or cause the RDOS to cease

exccution of the MONITOR program.

errors will be severe enough to cause

"panic." In this casc, the cowmputer

71

In the worst case, RDOS
a NOVA/ECLIPSE system

halts and displays the

error condition and accumulator wvalues. The RDOS Reference
Marual (Ref 9:F-1 - F-2) details these circumstances. In a less
severe, but fatal error condition, the RPOS will halt execution
without a "panic." Geuerally, a "Control A" input will restore
the CLI to the user. On cther occasions, "Control A" will have
no effect. In these circumstances, the user must reset the
computer and bring it up e¢s if it had been powered down. In the
best case, the RDOS error condition will causc an automatic
return to the RDUS CLT and the error condition will be displayed
to the user. In any case, RDOS error conditions are genevally
symptonmatiec of software errors in the executing program. All
such error conditions should be examined and iracked in order to
correct apparent errors in the source code,.

MOKTTOR Fxecutive Function Errors. Executive function

errors are closely related to NOVA/LNCLIPSE errors., In fact,
these crrors are produced by the RDOS, but are generally
anticipated. Thus, such errors are caught by the MONITOR
progran and serviced automatically, or a specific error
condition causes a softwarc halt of the program. For example,
whenever a FORTRAN call to open a file is executced, a potential
error may occur that indicates that the file 1is already open or
that such a file doesn”t exist. MONITOR handles all of these
types of errors by executing a STOP and displaying the cause of
the stop. Specifically, if the CYBER action file would not open
properly when a call was issued to open it, the {following

message would be displayed for the user:

72

syer CACT NOT OIENLED PROPERLY
Other executive function errors are handled identically. Tn
each instance, the cause must be icolated before program MONITOR
can be executed successfully.,

MOLTIOR Interpreter Frroxs. The interpretcr crrors arve
those that the interpreter HONITOR.FR anticipates and handles.
These errors are handled entirely within the MOHITOR softwarc.
Whenever such as error occurs, the wuscr 1s notified via
display, and a prompt is given to indicate that a connected
input 1is needcd. Fach of the anticipated errcr conditions and

their reasons are provided below:

INVALID COVMALD - EMPTY STRILG

Indicates that a command striug 1s comprised of all Dblanks
or nulle. (Entcring a carriage return alene will result in
this error condition.)

SYRTAX FERRGR
FIRST OR LAST TLITERAL INVALID SEPARATOR

Indicates & command strirp began with a corma and/or ended
with a conura, (Only commas and spaces are separators.
However, commag cannot start or eud a command string.
Spaccs arce ignored except between other literals. Thus, an
entry of a coumand strinrg that ends with a cormea and then a
space will reesult in this error condition. NOTE: Internal
null arguuents within a command string arc &llowved. Yor
example,

PUT,,THIS ,THERE

will be accepted as a valid string with the command PUT and
four arguments.)

INVALID COMMAND - TO0OO FEW CHARACTERS
Indicates a command string with just one character. Again,

spaces are ignored except between other litcerals,

73

IS T

T
The o dntos o : .t Jour arpunients. This
tudicote L . : were supplied with a

INVALTD Contlialiny - oo Iy vdA b

Fach coroand aod cach sr,trent may te un to 30 characteres
long. This iodicates o veraoand or argunent entered was 31
or more choracters.,

IRVALID COMATD
COMMAND HoOT T ACTION FILE
SUTTLIID NOT LCQUAL REGUIRED ARCGUIULKRTS

Indicates one of twe poseibilities: (1) there was not a
match of the command entered with any commeond contained
within the acticen file. (could be a misspelling.) (2) the
action file cowmmard required x avyuments and either less
than % or more than x arguments wvere input. (The number of
arguments must be exactly as specified within the action
file.)

LAUD AFORT

UNEXPRECTED ENTRY IN ACTION FILL

Indicates an undefined or nonexistent control character set
within a cownand sequence. (The action file wmust be
corrected.)

74

The basic structural design of any action file is detailed
in the main body of this report. This chapter describes the
overall design of action files and details the design of the
specific CYLER action file developed and implemented. The

listing of the action file itself is in Appendix D.

Fssentially, the intcrpreter initially looks for the first
chharacter or f{irst twn characters of each 1line in the action
file. Depending upon these characters, action 1s taken to read
the next line, stop reading the file, or execute a line Just
rcad. Thue, only specific characters are expected in the first
twvo columns of the action file. Any cther characters are simply
ignored. I{ no recognizable characters or no characters at all
are in columns one or two, the interpreter cannot find any
useful information and aborts reading. This feature does allow,
however, comments to be inserted anywhere. The <character "C",
for example, 1is not expected by the interpreter. Thus, ell
lines beginning with "C" are ignored and serve as comment liues.
Any other unexpected character, such as "A'", could also have
been used, but "C" was arbitrarily chosen to match with FORTRAN
comment lines.

Spacing is predetermined by. the expectation of the
interpreter as well. The exact spacing established 1is
arbitrary, but once established, it must be followed explicitly.
Thus, colunns one and two are reserved for control characters.

Anything may be in the rest of a comment line. Lines that begin

75

with "“END." and "FINISH.'" may have comments after thew, as the
interpreter will simply read the first character and ignore the
remainder of the linc. Each «command sequence starts with a
periocd, followed by the nawme of a particular action file. Thus,
for the CDC CYBER, each sequence starts with ".CACT" . This
name is followed by a specific coumand, as indicated in Chapter
3. The command 1is followed by the exact number of arguments
required in thke form of a sharpsign and an accompanying integer.
Argumcnt thrce 1s #3, for cxawple. Each of these cntries must
be separated (arbitrarily) by commas. As mentioned in the body
of this report, this header 1line 1is follcwed by execcutable
statements preceded by control character sets. The executable
statetents must (arbitrarily) begin in column nine. (NOTE: A tab
will not suffice to scparate the control character sets from the
executable statewments.) In each executable ~statement that
requires an arguwment, the exact argument parameter from the
header statcment must be wused, Thus, if an executable line
requires arpument three, the executable 1line must contain #3
exactly where argument three is required. The interpreter will
substitute the arguments entered by the user into the specified
locations. As noted before, each command sequence ends with the
keyword "END." . and the entire action file command sequence
ends with the keyword "FINISH." .

All executable statements in the action file are sent to
the CYBER for execution if preceded by the control character
set WS, Thus, these statements are exactly as required by the

CDC CYBER. Similar requirements must be met for other action

76

files. The order eof these statements must also be acceptable to
the connected computer system. If not in the proper order or
syntactically incorrect, the CYBER system will gencrate error
conditions and displey them to the wuser. Essentially, the
method of transf{erring files to and from the CYBER utilizes the
command execution mode of the CYBER system. In this mode, the
CYBER always respouds after correct user input with "COMMAND-" ,
and this is indicated in the action file response 1line == the
line preceded by the character "IM™ Up to two expected
responses from the connected system may be in the line after
the control character "I, beginning in column nine.
Instructions entcred in the command sequences for PUT, GET, and
siwmilar command strings, simply tell the CYEER to copy all input
to a file mname or copy all output from a file name. The
NOVA/ECLIPSE access ports, when connected to the CYBER, send to
the dinput file and receive from the output file. To terminate
this copying, the command instruction ZEOF is issued. All other
comaand sequences are straightforward and detailed in the CYBER
user documents.

All other executable statements not preceded by WS tell the
ROVA/ECLIPSE RDOS to do something. Most are straightforward and
all are cxplained within the body of this report. The 1lines
preceded by WC and RC contain executable statements for the RDOS
CLI. For example, the line containing

XFER/A #1 QQVV/R
is a CLI instruction to transfer the ASCITI file named as

user-supplied argument one to the temporary disk file QQVV, and

71

to make file QQVV a random file. Control character sets RC and
WC precede these kind of executable lines, causing a swap to the
CLT to executce these instructionms and then a swap back to the
main interprcter program. Those lines that are blank, except
for the control character set, have no statements to be executed
per se. The MONITOR software proceeds strictly upon the basis
of the <control sequence read. In the case of the set RR, the
interpreter creates a tewporary file on the MNOVA/ECLIPSE disk
that will be used by a subscquent RC statement, Hence, in order
for the command sequence to exccute properly from start to
finish, any line with the BR control character scet must be
fellowed by a line with the RC control character set. The RV
character set indicates that a carriage return needs to be sent
to the CYBER to initiate access. This particular co-amand
instruction is CYBER system dependent, and may require some
modification 1if expected to be wused with another connected
computer systcm. The entry beginning in column nine after the
control set WL will be sent verbatim to the user terminal for
display. lNo other control character sets have been established
for the interpreter.

Tt should be noted that the RDOS console interrupts have
not been deactivated anywhere within the software developed.
Thus, the console interrupts for the RDOS CLI are effective when
executed within MONITOR., For example, an entry by the user that
is incorrect may be totally replaced by simply entering a

backslash "\" . The next keyboard entry will begin a new line.

The backspace works, and the "Control A" and "Control C" inputs

78

o e -

work as well, "Control A" and "Control €" cause the currently
exccuting program, such as MONITOK, to be interrupted and
control returned to the RDPOS CL1. "Control C" also provides a
"Break" file that displays a dump of memory at the time of the
interrupt.

Finally, the action file for the CYBER has been sct up with
the following results. The products produced wupon the CYBER
card punch and/or printer are to bc output to the terminal
located in the AFIT School of Engincering. Further, all
products may be picked up at the bin labeled "M/RN" , since all
output products will be tagged with the banner NEO. The NOVA
terminal identification number for logging in purposes is
arbitrarily set at 777. lLastly, the order o¢f the ccunands
entered into the action file is based upon use. Thosc commands
used frequently are placed in the action file”s beginning,
whereas those wused 1less frequently are placed later in the
action file. Since the interpreter scarches the action file
sequentially from the beginning each time 2 command is needed,
those used more often will be found in less time. (NOTE: The
same named command may appear more than once within an action
file. Tn order for the interpreter to distinguish one command
from another, in this <case, the number of arguments must be

different for each command name.)

79

6. Suwmary

The instructions and guidelines contained within this user
manual are the minimun needed to operate MONITOR. Once a uscr
becomes familiar with the action files and interpreter, many
other opportunities may occur to experiment with the program
MONITOR that would alter the guidelines set forth herein. Such
changes are expected and desirable, if this command language is
to truly be genceral purpose. Furthermorc, there may be areas in
which even the basic structure of the interpreter may be
profitably altercd., See the recommendations covered in Chapter
V of the main report for some potcentizl examples. Finally, the
source listings and interactive guidelines have been developed
to provide the wuser with necessary instructions governing
MONITOR execution. Thus, a user should be able to use MONITOR
quite readily with only a listing of the selected action file to

consult, once program execution has begun.

80

Appendix B

Propram Descriptive Flowcharts

81

START
MORITOR

OPEN ALL
ACTION FILES
CALL BGIH
CALL PROMPT

/.-_-‘
SELLCT
ESIRED
ACTION FILY

CALL GETRSPS
CALL éNVRT

——

ACTIVATE
TASK SYSIN

CALL
~. PROMPT

Fig 4. MONITOR.FR (Part 1)

82

PROCESS
STRING

‘ii"“’ OK?

N Yes
L/

EXAMINE
ACT10R
FILE

character?

Neither

Pericdl CONPARL
oy

HEADERS

AN
a No
[DETERMINE
ARGUNLINTS
2 No
* An error message 1is

sent before rcturning

Fig 5. MONITOR.FR (Part 2)

83

Yes

*

EXAMTRE
NEXT L1KE OF
ACTION FILE

What
character

\fs:?
Neither Q«————~——~——{<:::>
% ,

EXECUTE
COMHAND

S

leither

An error message is sent before returning

Fig 6. MONITOR.FR (Part 3)

84

L0oOK FOR
SUARPSIGHS

SUBSTITUTE
ARGUMENTS

Fig 7. MONITOR.FR (Part &)

(N4

KILL
TASK SYSIN

g

CALL
TOTER

Fig 8. MONITOR.TR (Part 5)

85

RETURN 570
THE CLI _/)
Fig 9. MONITOR.FR (Part &)

START
EGIN

e —

24
orPLn
CHAELLLS 04
STTO/STT1

i

~
R

Fig 10. BGIN.SR

"

WRITE
">CR" TO

Fig 11. PROMIT.SR

86

Lok

e

START
CETRSPS

I CLE AI\
RLS })Unfll':
ARRAYS

_— 'T -
/,N_»&vy,._.

READ
L1 FRON
ACTION P11

R T

.
N
Mo F]rsl\\
o s
L . . character
I?/

Yes

READ
REST OF
LIKNE

coace” WAt ,1 STORE
I L%!IU‘BCL(‘I‘? U“.‘,f‘_; SECOLD
| RESPONSE
A {
Noi ther
STOR!
F IRSI
RESPOISE

— ,,,\Lh e A

Fig 12, GETRSPS.FR

&7

AD-A100 819

UNCLASSIFIED

AIR FORCE INST OF TECH WRISHT~PATTERSON AFB OH SCMOO=-ETC F/6 9/2 °
CONSTRUCTION OF A GENERAL PURPOSE COMMAND LAMGUASE FOR USE IN C-=f£TC (i)
SEP 80 W D GRIESS

AFIT/6CS/EE/805-18

-— e — ————

a2

START
CNVRT

LOAD
ELEMENT OF
FIRST ARRAY

element ? SWAP
' BYTES
Yes
LOAD STORE
ELEMENT OF IN FIRST
SECOND ARRAY BUFFER
Last SWAP
element? BYTES
STORE
IN SECOND
BUFFER

Fig 13. CNVRT.SR

88

START
TOTERM

REMOVE
$TTO1 &
$TTI1

CALL
TERHOP

A

Fig 14. TOTERM.SR

CALL
WRSYS

* Return to a specified line number (602)

Fig 15. WRITSYSTM.FR

START
WRSYS
LOAD
ELEMENT OF
ARRAY
INCREMENT Last
SUBSCRIPT element?
OUTPUT SWAP SUSPEND
ELEMENT BYTES MONITOR
TO S$TTO1

Fig 16. WRSYS.SR

WRITE Rg:;k
ARRAY
TO $TTO

* Return to a specified line number (602)

Fig 17. WRITLOCAL.FR Fig 18. READLWRITS.FR

START
RDAWR

Y

GET INPUT
FROM

OUTPUT
IICRII To
$TTO/$TT01

SUSPEND
MONITOR

e

Fig 19. RDAWR.SR

CREAT FILE
HVVQQ "

* Return to a specified line number (602)

Fig 20. READYREAD.FR

91

Mo SweEagmg - . .

g

, -

CREATE &
OPEN FILE
"CLI.CM"

WRITE
ARRAY TO
"CLI.CM"

CLOSE FILE
"CLI.CM"

KILL TASK
SYSIN CALL
EXCLI
. ACTIVATE
.. TASK
> SYSIN
CALL
GETFILE

* Return to a specified line number (602)

Fig 21. SENDFILE.FR

92

Y

START
EXCLI

Ly

OPEN FILE
“CLI.CM" FOR
APPENDING

—

WRITE
"POP<15>"
TO "CLI.C}!

CLOSE
FILE
"CLI.CM"

EXECUTE
CLI.SV ON
LEVEL TWO

DELETE
FILE
"CLI.CM"

Fig 22. EXCLI.SR

93

- &

> r— ——— o

)
.3

START

GETFILE

OPEN FILE
IIQvill
FIND FILE GET LAST Yes
STATUS FOR BLOCK NUM
uQvin OF "QQVV"
No
A _
LOAD SIZE ADD BYTES CHANGE
OF FILE OF LAST BLOCKS TO
"QQvv" BLOCK BYTES
Az
LOAD NUM
OF BYTES
IN BLOCK
L
JUMP TO OUTPUT
R PART
EAD PAR SUBROUTINE CR" TO
OF FILE SENDIT STTO1
INTO BUFFER
JUMP TO CgoiETg
SUBROUTINE PILE ve -
SENDIT QQ
RECOMPUTE
SIZE OF
llQvill
Fig 23. GETFILE.SR

94

L

————— —

START
SENDIT

SAVE
PROCESSOR
STATE

k

S

GET WORD
TO OUTPUT

OUTPUT
LEFT BYTE

BYTE TO
STTO1

INCREMENT
BUFFER
POINTER

RESTORE
PROCESSOR

STATE

Fig 24. GETFILE.SR (Part 2)

95

'

-~

CREATE &
OPEN FILE
"CLI.CM"

WRITE
ARRAY TO
"CLI.CM"

CLOSE
"CLI.CM"
KILL TASK
SYSIN
CALL EXCLI
S~ ACTIVATE
N TASK
SN SYSIN
~
N
]
DELETE
FILE
"VVQQ "

* Return to a specified line number (602)

Fig 25. RECEVFILE.FR

96

. ——— —— —

START
TERMOP

DEFINE
"LINERD"
AS A TASK

DEFINE
INTERRUPTS
$TTO1/STTI!

GET INPUT
FROM S$TTI

RETURN TO
THE CLI

OUTPUT
TO
$TTO1

Fig 26. TERHOP.SR (Part 1)

97

START
LINERD

COMPARE
INPTR TO
OUTPTR

OUTPUT
CHARACTER
TO $TTO

INCREMENT
OUTPTR
{
L
Outpt Ye RESET
equal to > OUTPTR TO
axptr? BEGINNING
No]

STORE REW
QUTPTR

Fig 27. TERMOP.SR (Part 2)

98

Fig 28.

START
$TTO1
SERVICE

CLEAR
INTERRUPT

TERMOP.SR (Part 3)

Fig 29.

START
S$TTI1
SERVICE

SAVE
PROCESSOR
STATE

INPUT

CHARACTER
CLEAR

INTERRUPT

e

STORE
CHARACTER 1IN
BUFFER

7

INCREMENT
INPTR

End of
buffer?

beginning?

STORE NEW RESET &
INPTR STORE NEW
INPTR
]
RESTORE
PROCESSOR
STATE

TERMOP.SR (Part 4)
99

RESET
DELAY
PARAMETERS

START
SYSIN

DEFINE
INTERRUPTS
$TTO1/$TTIL

T

COMPARE
INPTR TO
OUTPTR

RESET
DELAY
PARAMETERS

CLOSE
FILE
"wvoQ"

READY
TASK
MONITOR

DECREMENT
DELAY
COUNTER

Counter
zero?

J’NO

DELAY/HOLD
PROCESSOR

L

Fig 30. SYSIN.SR (Part 1)

100

LOAD
CONTENTS
OF OUTPTR

INCREMENT
OUTPTR

End of Yes RESET ,

| OUTPTR TO
N
buffer? BEGIENING wJ
. —
No !
STORE
NEW
OUTPTR

STORE 1IN
HATCH
BUFFER

INCREMENT
& STORE NEW
MATPTR

Fig 31. SYSIN.SR (Part 2)

101

- - T~ w -~ ¥

LOAD MATCH
BUFFER
START

LOAD FIRST
RESPONSE,
AND ‘SIZE

No

Fig 32.

COlPARE A
CHARACTER
OF EACH

Yes

INCREKENT
BUFFER
POINTERS

DECREMENT
RESPOKSE
S1ZE

102

RESET
POINTERS TO
BEGIKNING

SYSIN.SR (Part 3)

LOAD MATCH
BUFFER
START

4

LOAD SECOND
RESPONSE
AND SIZE

COMPARE A
CHARACTER
OF EACH

Yes

INCREMENT
BUFFER
POINTERS

DECREMENT
RESPONSE
SIZE

RESET

POINTERS TO
BEGINNIK
—d

Fig 33. SYSIN.SR (Part 4)

103

P — e o e+ et

—

OPEN
FILE
"VVQQ "
COMPARE Yes to LOAD OKNE
TO ERROR WORD OF
ERDLE MATBUFR
vvQQ Yes LOAD ONE WRITE A
already WORD OF BYTE TO
exists} MATBUFR "vvQQ"
COMPARE WRITE A Yes Buffer
TO ERROR BYTE TO complete?
ERUFT S$TTO
Ye% '
complote? INCRENENT
omplete: MATPTR
No
RETURN TO THCREMENT
THE CLI MATPTR
]
A
LOAD
"CRH
RESET
MATPTR TO
BEGINNING

Fig 34. SYSIN.SR (Part 5)

104

Appendix C

Loading and Executinpg MONITOR

Each individual routine or subroutine created for the
NOVA/ECLIPSE must be separately compiled or assembled. In
accordance with the RDOS conventions, all assembly 1language
routines have been given the file name extension "“.SR"™ ., Al1l
FORTRAN routines have been given the file name extension ".FR"
. For example, the source code for the main interpreter program
is named MONITOR.FR, and the source code for the separate task
program is named SYSIN,SR. To assemble each assembly langauge
source program, the MACRO assembler was wused. A typical
instruction to cause assembly follows:

MAC SYSIN
The extension is not needed, since the asscmbler automatically
searches for the file name with the extension ".SR" ., To
compile each FORTRAN language source program, the FORTRAN
compiler was used. A typical instruction to cause compiling
follows:

FORT MONITOR
The extension is not needed, since the compiler automatically
searches for the file name with the extension ".FR" . The local
switch "/L" (slash and L) may be used to create a disk file to
contain the assembled/compiled results.

The RDOS relocatable loader was used to load all previously
assembled and compiled programs. The first file name listed in

the loader instruction sequence becomes the executable save

105

]

file. All such files are given the file name extension ".SV" .
The local switch "/L" may be wused to create a disk file to
contain the load map of the results. The following string
comnand was used to load all programs/sources that constitute
the MONITOR command language interpreter:

RLDR/P/U MONITOR BGIN PROMPT REVERT GETRSPS CNVRT °

WRITSYSTM WRSYS WRITLOCAL READLWRITS RDAWR SENDFILE °

EXCLI GETFILE READYREAD RECEVFILE TOTERM TERMOP °

SYSIN FMT.LB FORT.LB MINES/L
Once executed, file MINE5 contains the load map and file
MONITOR.SV is the executable binary file. The local switch "/P"
causes the normal relocatable value of each separate binary
file to be printed out to file MINES5, and the switch "/U" causes
a chain of undefined symbols to be maintained. File FORT.LB
supplies needed FORTRAN runtime libraries and file FMT.LB
supplies the needed multitasking library. The order and

sequence of the 1loader command 1is as specified in the RDOS

Reference Manual (Ref 9:D-6).

106

S — e e ey -

Appendix D

Propram MONITOR Source Listing

107

1

+ 4+ + + + o+

O T T T A T SC N SN S A

MONITOR .FR
#%%% CLREATED 30 AUGUST 1980; REV 01 ¥+

+ + + ++ o+

O . T T 2 T T R A A A

%

TRANTRRN%

Program MONITOR.FR provides a simplified, general purpose
Command Language for use in computer to computer dialog.

The host system is a Data General (DG) NOVA 2/10 that is
connected via a shared disk operating system to a DG

ECLIPSE §/250. Via a standard RS 232 modem link, this
program allows intercommunication to any compatible computer
system. Hereafter, the NOVA/ECLIFSE is referred to as
"local" and the connected computer as "system." The

program was initially designed for intercormunication with
the ASD Control Data Corp CYBER 750 as the "system."

MONITOR serves as a basic command string interpreter. Upon
execution of MONITOR, the user is provided instructions on
how to access the "system" and a prompt ~">"- to enter
commands. Command structure and use are described in the
MONITOR Command Language User”s Manual,

"Local" input is received on a "local" device channel ~ $TTO!.
"Local" output is transmitted on device channel - $TTIl. Via
multitasking, a task (SYSIN.SR) is always monitoring input
while another task (MONITOR.FR) is always conducting output.
MONITOR acts as the executive control of these functions, in
addition to its role as interpreter.

The structure, concept, design, and implementation of program
MONITOR and its assorted subroutines are detailed in the thesis
that accompanied the development ~ AFIT/GCS/EE/80-2.

kkkdkkkkkk

QOO0 OO0 OO0 OO0 0000000O0 ? o
1
t

108

s NeoNeNs NNl s NeNsNeNeNe]

s EeNeNsrNoNoNel

A OOOO0O0O00

eNeNeNoNeN]

ok

k%

*k

*%

Start the program by defining tasks, channels, parameters, *%*
etc. CHANTASK 77,2 declares that up to 77 distinct channel
numbers may be used in the program and that 2 asynchronous
tasks may be exccuting "simultancously."

CHANTASK 77,2

PARAMETER MDIMl is the size of the one-dimensional command **
instruction arrays. MDIM2 is the size of the one-dimensional
argument arrays and valid instruction string array. MDIM3

is the size of the one-dimensional response arrays.

PARAMETER MDIM1 = 82, MDIM2 = 30, MDIM3 = 40

SYSIN.SR is a separately-compilled assembly language program *¥
that serves as the task for monitoring all "system" input.

DG FORTRAN requires this program to be externally defined in
the calling program (MONITOR), before it is activated via a
call to ITASK.

EXTERNAL SYSIN

INPUT is the initial array store for input commands. After **
a determination of the command”s validity, TACTFILE isc the
array store for commaad strings read from the action file.

Up to four (4) arguments are possible with any single

input coumand, and the arguments are stored in the IARG
arrays. Up to two (2) separate responses from the "system"
may be provided, and they are stored in the IRSP arrays.

DIMENSION INPUT(MDIM1), ICOMMAND(MDIM2), TARG1{(MDIM2)
DIMENSION IARG2(MDIM2), TARG3(MDIM2), IARG4(MDIM2)
DIMENSION IACTFILE(MDIML), IRSP1(MDIM3), IRSP2(MDIM3)

Characters used for comparisons and decisions are data *k
initialized. Therefore, they must be declared COMMON

as well., The data are mnemonic. For example, KLTRW is

the letter "W'" and KOMMA is a "," .

COMMON /KONST/ KSPACE, KSLSH, KOMMA
COMMON /KONWST/ KUPAROW, KLTRL, KLTRT
COMMON /KOWST/ KNULL, KPERIOD, KLTRF
COMMON /KONST/ KLTRE, KLTRC, KLTRW
COMMON /KONST/ KLTRR, KSHARPSGN ,KLTRS
COMMON /KONST/ KNUM1, KNUM2, KNUHM3
COMMON /KONST/ KNUM&

DATA KSPACE,KSLSH,KOMMA/ "'<40><40>","<57><40>","<54><40>"/

DATA KUPAROW,KLTRL,KLTRT/ "<136><40>","<114><40>","<124><40>"/
DATA KNULL,KPERIOD,KLTRF/ "<0><40>","<56><40>","<106><40>"/
DATA KLTRE,KLTRC,KLTRW/ "“<105><40>","<103><40>","<127><40>"/
DATA KLTRR,KSHARPSGN,KLTRS/ "<122><40>","<43><40>","<123><40>"/
DATA KNUML,KNUM2,KNUM3/ "<61><40>","<62><40>","<63><40>"/

DATA KNUM4/ "<64><40>"/

109

OO0

e NeNesNe!

[sNeNeNe)

o

*%

DG FORTRAN allows labels to be tagged.
thus defined:

ASSIGN 102
ASSIGN 106
ASSIGN 108
ASSIGN 202
ASSIGN 206
ASSIGN 304
ASSIGN 306
ASSIGN 404
ASSIGN 406
ASSIGN 412
ASSIGN 420
ASSIGN 428
ASSIGN 436
ASSIGN 444
ASSIGN 446
ASSIGN 502
ASSIGN 506
ASSIGH 508
ASSIGN 512
ASSIGN 602
ASSIGN 606
ASSIGN 608
ASSIGN 610
ASSIGN 614
ASSIGN 615
ASSIGN 702

TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
10
TO

IDOOVER
IILGNUM
I1CONT
IPROMPT
IEND206
ISYRERKR
IRMSTOR
ILMSTOR
I2CONT
ICMDSTOR
I1ARGSTOR
I2ARGSTOR
I3ARGSTOR
I4ARGSTOR
ILGTHERR
IEXAMFILE
INOMOENTRY
ICHKHDR
I3CONT
I4CONT
IEXECUTE
ICHKSUBS
ICONTCHK
NRMSTOR
I5CONT
ITERMOP

The following are

BGIN.SR opens channels 21 and 22 for "local" input and

output.

CALL BGIN

The various possible action files to be interpreted are

opened on the channels indicated.

CALL OPEN (1,"CACT",2,IEROR,82)

IF (IEROR .NE. 1) STOP CACT NOT OPENED PROPERLY.

CALL OPEN (2,"DACT",2,JEROR,82)

IF (JEROR .NE. 1) STOP DACT NOT OPENED PROPERLY.

CALL OPEN (3,"vACT",2,KEROR,82)

IF (KEROR .NE. 1) STOP VACT NOT OPENED PROPLRLY.

CALL OPEN (4,"MACT",2,LEROR,82)

IF (LEROR .NE. 1) STOP

110

MACT NOT OPENED PROPERLY.

w¥E

*¥

TYPE "The Monitor program you have entered provides "

TYPE "intercommunication between the MOVA/ECLIPSE computer"
TYPF. "system and your choice of another system."
TYPE n n
TYPE non
C IDOOVER = 102
102 TYPE "Please enter the digit opposite the action file"
TYPE "you desire to use: "

TYl)E "
TYPE " 1 -~ CDC CYBER"Y
TYPE " 2 -- DEC 10 "
TYPE " 3 —— VAX 11/780 "
TYPE " 4 -~ Your own "
C
c *% Call the program PROMPT to signal the user to i
c provide some kind of terminal entry.
c
CALL PROMPT
c
c ** Get the correct action file requested by the user. %
c

READ (11,104) INTRY
104 FORMAT (11)

C
IF (INTRY .LE. 0 .OR. INTRY .GE, 5) GO TO IILGNUM
GO TO (1,2,3,4) INTRY
C
C IILGNUM = 106
106 TYPE "You have entered an illegal number. Try again!"
GO TO IDOOVER
C
1 TYPE "You have selected the CYBER."
GO TO T1CONT
C
2 TYPE "You have selected the DEC.,"
GO TO T1CONT
C
3 TYPE "You have selected the VAX."
GO TO I1CONT
C
4 TYPE "You have selected your own file."
GO TO I1CONT
C
C *% Once the desired action file has been selected, GETRSPS.FR *¥
c finds the action file and stores the responses to be sought
C from the "system" from this point forward.
C
C I1CONT = 108
108 CALL, GETRSPS (INTRY,IRSP1,IRSP2,118SZ,12SSZ)
c
c *% CNVRT.SR converts the characters stored in FORTRAN format, **%
C and found in GETRSPS, to assembly language format. It
c uses the same arrays and also returns the size of the
C response arrays,
C

CALL CNVRT (IRSP1,IRSP2,118SZ,72SSZ)
111

OO0 0 OO0

[eNeNeNe]

[sReNesNeNeNe!

#% The preliminaries arc over and the program is now rcady *
for user instruction inputs.

TYPE "Thank you. Please enter a command.”

%% ITASK activates task SYSIN.SR with identity number ten (10) **
and priority onc (1). Thus, SYSIN has lower priority than
the calling program - MONITOR, MONITOR has priority zero (0).

CALL ITASK (SYSIN,10,1,IER,1)
IF (IER .NE. 1) STOP SYSIN NOT ACTIVATED PROPERLY.

** Provide the user with the prompt '">" . w

IPRCHPT = 202
202 CALL PROMPT

*%¥ After each access to the actien file, its pointer needs ¥
to be reset to the file”s beginning. The call to FSEEK
rescts the pointer accordingly.

CALL YSEEK (TNTRY,0)

% Read what the uscr inputs and store in INPUT, Word entries %%
may be separated by individual commas or single spaces.

READ (11,204) (INPUT(I), I = 1, MDIMI)
204 FORMAT (82A1)

** Check to see if user desires terminal only operaticn or a *%
return to the "local" command language - CLI. An input of
"“L" reverts user to the "local" CLI. An input of "°T"
causes terminal only operation.

DO 206 INDXA = 1, MDIM]
IF (INPUT(IND¥A) .NE. KUPAROW .OR. INDXA .GE. MDIMI)
+ GO TO IEND206
INDXA = INDXA + 1
TF (INPUT(INDXA) .EQ. KLTRL) CALL REVERT
IF (INPUT(INDXA) .EQ. KLTRT) GO TO ITERMOP
INDXA = INDXA - 1
1END206 = 206
206 CONTINUE

112

OO0

a0

e NeoNe

c

(e N o Ne] > NeoNeNeNs

(o e Nele

a

*% Search array input right to left to find the first non-null/# =
non- Llank character.
DO 302 INDXE = 1, MDIML
IF (IRPUT((MDIML + 1) — INDXB) .EQ. KOMMA)
+ GO TO TISYHNERR
IF (INPUT((HDINML + 1) = TINDXB) .NE. ENULL .AND.
+ INPUT{(MDINL + 1) - INDXB) .NE. KSPACE)
+ GO TO IRMSTOR
302 CONTINUE
%% 1f nome, so state and return Lo prompt. *%
TYPE " "
TYPE " #%¥%%% INVALID COMMARD - EMPTY STRING *¥#w%«l
GO TO IPRCHPT
*% If the string ended with a separator comma, so state *k
and return to the prompt.
ISYUERR = 304
304 TYPE " "
TYPE " %%t GYNTAX ERRQR %¥¥ks M
TYPE " #%%%% F¥IRST OR LAST LITERAL INVALID SFPARATOR "
GO TO IPROMFT
*% Otherwise, store the index of the rightmost character. ww
IRMSTOR = 306
306 IRTHSTINDX = (MDIMI + 1) - INDXB
*% Now find the leftmost character. *%
DO 402 INDXC = 1, MDIMIL
IF (INPUT(IKDXC) .EQ. KOMMA) GO TO ISYNEKR
IF (INPUT(INDXC) .NE. KSPACE) GO TO ILMSTOR
402 CONTINUE
*% This error return should never be taken. %%
TYPF: " on
TYPE " #%%%% INVALID COMMAND - EMPTY STRING skt
GO TO IPROMPT
**% Discard initial blanks/spaces and store it. *%
ILMSTOR = 404
404 LTMOSTINDX = INDXC

113

az S==—_ — %

OO0

[eNeReNe N el

OO0

o

ok

*7

Check for obvious error condition.
IF (LTUOSTINDN JKE, IRTMSTINDX) GO TO 12CONT
TYPE " "
TYPE " #%%%% INVALTD COMMAND - TOO FEW CHARACTLRS sk
€O TO IPROMPT

Now scarch the input string for the command portion, i.e.,
until a separator or a rightmost character is encountered.

I2CONT = 406

400

408

410

+

ft

ok

%

DO 408 INDXD = LTMOSTINDX, TRTHSTINDX
IF¥ (INPUT(INDXD) .FQ. KSPACE .OR. TNPUT(INDXD) .EQ.
KOMMA) GO TO ICHMDSTOR
CORTINUL

1f the string is a single cormand, store it in COMMAND.

g

First, initialize index for the COIMAND array.

NDIM1 = (IRTMSTINDX - LIIOSTIIDX) + 1
IF (NDIM1 .GT. MDINM2) GO TO ILGTHERR
DO 410 IKDXE = 1, NDINMI
ICOMMAND(ILDXE) = IKPUT(INDXE + (LTMOSTINDX - 1))
CONTINUE

At ecach point that the number of arguments is determined,

K%

*k

s
kX

jump ahead to execute the command. 1In this case, for example,

there is just a command word and no arguments.

NUMARGS = 0
GO TO IEXANFILE

A scparator was encountered, so there is more than just a
single command. Store the command portion and resolve the
rest of the string.

ICMDSTOR = 412

412

414

416

*%

+

NDIMI = INDXD - LTHMOSTINDX
IF (NDIM1 .GT. MDIM2) GO TO ILGTEERR
DO 414 I1MDXF = 1, NDIM
ICOMMAND(INDXF) = INPUT(INDXF + (LTMOSTINDX - 1))
CONTINUE

Proceed to establish the valuc of the first argument,

IDXP1 = INDXD + 1

DO 416 INDXG = 1DXP1, IRTMSTINDX
IF (INPUT(IKDXG) .EQ. KSPACE .OR. INPUT(INDXG) .EQ.
KOMMA) GO TO I1ARGSTOR

CONTINUE

114

*%

*%

(oM e]

(o]

(]

418

L

*

If a single argument, process it.

NDIM2 = IRTMSTINDX - INDXD
IF (NDIM2 .GT. MDIM2) GO TO ILGTHERR
DO 418 INDXH = 1, NDIM2

IARG1(INDXH) = INPUT(IKDXH + INDXD)
CONTINUE

NUMARGS = 1
GO TO IEXANFILE

A separator was encountered., Store the first argument
portion and resolve the rest of the string.

I1ARGSTOR = 420

420

422

424

426

%

*%

NDIM2 = INDXG - (INDXD + 1)
IF (NDIM2 .GT. MDIM2) GO TG ILGTHERR
DO 422 IKDXI = 1, NDIM2
IARGI(IRDXI) = INPUT(IKDXI + INDXD)
CONTINUE

Proceed to get the next argument for array 2.

IGXP1 = INDXG + 1

DO 424 INDXJ = IGXPl, IRTMSTINDX
IF (INPUT(INDXJ) .EQ. KSPACE .OR. INPUT(INDXJ) .EQ.
KOMMA) GO TO I2ARGSTOR

CONTINUE

Just two arguments - process the second.

NDIM3 = IRTMSTINDX - INDXG
IF (NDINM3 .GT. MDIM2) GO TO ILGTHERR
DO 426 INDXK = 1, NDIM3

IARG2(INDXK) = INPUT(INDXK + INDXG)
CONTINUE

NUMARGS = 2
GO TO IEXAMFILE

A separator was encountered. Store the second argument
portion and resolve the rest of the string.

I2ARGSTOR = 428

428

430

NDIM3 = INDXJ - (INDXG + 1)
IF (NDIM3 .GT. MDIM2) GO TO ILGTHERR
DO 430 INDXL = 1, NDIM3
TARG2(INDXL) = INPUT(IKNDXL + INDXG)
CONTINUE

115

Jx

x%k

%

*k

(]

o

s el

432

434

*N

**

k%

Procede to get the next argument for array 3.

1JXPl = INDXJ + 1
DO 432 INDXM = 1JXPl, IRTMSTINDX

IF (INPUT(INLXM) .EQ. KSPACE .OR. INPUT(INDXM) .EQ.

KOMMA) GO TO 13ARGSTOR
CONTINLUE

Just three arguments - process the third.

NDIM4 = IRTESTINDX - IMDXJ
IF (NDIM4 .GT. MDIM2) GO TO I1LGTHERR
DO 434 INDXN = 1, NDIM4

IARG3(INDXN) = INPUT(IKDXN +
CONTTNUE

NUMARGS = 3
GO TO IEXAMFILE

A separator was encountered. Store
and resolve the rest of the string.

I3ARGSTOR = 436

436

438

442

*%

NDIM4 = IKDXM - (INDXJ + 1)
1F (NDIM4 .GT. IDIM2) GO TO ILGIHERR
DO 438 INDXO = 1, NDIM4

IARG3(INDX0) = INPUT(INDXO +
CONTIRUE

INDXJ)

the third argument

INDXJ)

Procede to get the next argument for array 4.

IMXPl = INDXM + 1
DO 440 INDXP = IMXP1l, IRTMSTINDX

1¥ (INPUT(INDXP) .EQ. KSPACE .OR. INPUT(INDXP) .EQ.

KOMMA) GO TO I4ARGSTOR
CONTINUE

Just four arguments - process the fourth.

NDIM5 = IRTMSTINDX - INDXM
IF (NDIM5 .GT. MDIM2) GO TO 1I..'"FERR
DO 442 INDXQ = 1, NDIMS

TARG4(INDXQ) = INPUT(1KDXQ + INDXM)

CONTINUE

NUMARGS = 4
GO TO IEXAMFILE

116

*%

*%k

%%

k%

P

Give an error message aud return to the prompt.

o000

I4ARGSTOR = 444

444 TYPE " "
TYPE " %%¥%¥%% INVALID COMMAND - TOO MAKY ARGUMENTS *-
GO TO IPROMPT

»
%
¥

(oM@

JLGTHERR = 446
446 TYPE " "

TYPE " %¥%% INVALID COMMARD - TOO MANY CHARACTLRS *®%%

GO TO IPROMPT

*% A separator was encountered. There are too many arguments. *¥

%>

*% Once a potentially valid command string has been accepte
it is time to examine the action file for that command.
The strings of the action file are recad into IACTFILL.

OO0 0

IEXAMFILE = 502
502 READ (INTRY,504) (IACTFILE(J), J = 1, MDIML)
504 FORMAT (852Al1)

%% Check the first character of the line just read,
If an "F", there are no more entries to read. Jf a
period, then the encountered header line needs to be che

s NeNsN+Nel

IF (IACTFILE(1) .EQ. KLTRF) GO TO INOMOENTRY
IF (TACTFILE(1l) .EQ. KPERIOD) GO TO ICHKHDR
GO TO IEXAMFILE

[eN @]

INOMOENTRY = 506
506 TYPE " "
TYPE " #%%%% INVALID COMMAND *%¥*% O
TYPE " #%%%% COMMAND NOT IN ACTION FILE *%%¥% "
TYPE " #%¥%%% QR SUPPLIED NOT EQUAL REQUIRED ARGUMENTS
GO TO IPROMPT

C

C ** All commands are ten (10) characters or less. Here,
c the command portion of the header is determined.
C
C

ICHKHDR = 508
508 DO 510 INDXZ = 7, 17
IF (TACTFILE(INDXZ) .EQ. KSPACE .OR.
+ IACTFILE(INDXZ) .EQ. KOMMA) GO TO I3CONT
516 CONTINUE

117

d, **

N

cked.

exkk%k W

*k

c
C
C
c
C

c

sNsNoNsNsNoNoNoNeoNe

QOO OM

s NeNeNsNeoNsNoRe)

xk

I3CONT

512

+

514

wk

k%

Compare the header command to that input by the user. L
1f correct, procced. Otherwise, rcturn to read the action
file again until finished, or the next header is encountered.

= §}12
INDXY = INDXZ -~ 7

IF (NDIM1 .NE. INDXY) GO TO IEXAMFILE

DO 514 INDXX = 1, INDXY
1F (IACTFILE(INDXX + 6) .NE. ICOMMAND(IKDXX))
GO TO IEXAMFILE

CONTINUE

Look at the number of required arguments for this command. #*%
If there are no arguments, then two spaces after the

command string in the header will be a space. Simrilarly,

if there is one argument, five spaces after the command string
in the header will be a space, and so forth. The INDX

numbers are the location of the sharpsigns in the header

string. Compare the command string in IACTFILE with the
sharpsign location to determine how many arguments are rcquired.

INDX1 = INDXZ + 1 ;The sharpsign is 2.5,8,

INDX2 = INDXZ + 4 ;and 11 spaces after command
INDX3 = INDXZ + 7 ;string - 1,4,7, or 10 spaces
INDX4 = INDXZ + 10 ;after comma, if arguments exist

NNUMARGS = 4
IF (IACTFILE(INDX4) .EQ. KSPACE) NNUMARGS =
IF (TACTFILE(INDX3) .EQ. KSPACE) NKUMARGS
IF (TACTFILE(INDX2) .EQ. KSPACE) NNUMARGS =
IF (IACTFILE(INDX1) .EQ. KSPACE) MNUMARGS

Jif

|
O W

Compare the required number of arguments with the supplied *=*
number of arguments.

IF (NUMARGS .EQ. NNUMARGS) GO TO I4CONT

If the arguments supplied are not equal the number required,¥x*
then continue to examine the action file for the same named
command with the appropriate number of arguments. (NOTE: This
means that more than one command with the same name may be entered
and found within the action file, but each must have a different
number of arguments.)

GO TO IEXAMFILE

QO

118

C
c
C
C
C
C
C

OOO0OOO0O000CO000

s NeReNe]

I4CORT
602
604

xx

+

.

If arpuments required equal arpuments supplied, then read *¥%
the next live in the action iile, which 1s the first corumand
in the cormand sequence. The last comwand in the sequence
precedes "END." .

= 602
READCINTRY,604) (IACTFILE(K), K = 1, MDIML)
FORMAT (82Al)

Look at the first two control letters to determine *x
specific actions to take. 1f "EKD." is cncountered, the command
sequence 1s over. If an "S8" or '"C" is encountered in column

twvo (2), then the string needs to be checked for substitution

of arguments for the sharpsigns in the action {ile. Then the
remaining control letters are exsmined. Appropriate subroutines
are cualled to exccute the strings as required. Each subroutirne
returns to the place where a new line out of the action file

may be read and examined. For further discussion of control
characters, look at the action file documentation or the

MONITOR Command Language User”s Manual.

IF (IACTFILE(1l) .FEQ. KLTRE) GO TO 1PROMPT
IF (IACTFILE(2) .FQ. KLTRS .OR. TACTFILE(2) .EQ. KLTRC)
GO TO ICHKSUBS

IEXECUTE = 606

606

+

3%

IF (IACTFILE(1) .EQ. KLTRW .AND. IACTFILE(2) .EQ. KLTRS)
CALL WRITSYSTH (JACTFILE,NRTMSTINDX,$602)

IF (TACTFILE(1l) .EQ. KLTRW .ALD. JACTFILE(2) .EQ. KVLIRL)
CALL WRITLOCAL (IACTFILE,NDINI,S$602)

IF (IACTFILE(1) .EQ. KLTRR .AND. TACTFILE(2) .EQ. KLTRW)
CALL READLWRITS ($602)

IF (IACTFILE(1l) .EQ. KLTRW .AND. TACTFILE(2) .EQ. KLTRC)
CALL SENDFILE (IACTFILE,NDIMNI,$602)

1F (IACTFILE(1l) .EQ. KRLTRR .AilD. TACTFILE{(2) .EQ. KLTRC)
CALL, RECEVFILE (IACTFILE,MDINL,S$002)

IF (JACTFILE(]) .FQ. KLTKR .AND. IACTFILE(2) .EQ. KLTRR)
CALL READYRLAD ($602)

If unexpected letters are encountered, the action file is #%
suspect. Abort and try again.

TYPE " "

TYPE " #¥%%¥% COMMAND ABORT *¥%#x¥x

TYPE " %%#%%% UNEXPECTED ENTRY IN ACTION FILE *#%¥%&% "
GO TO IPROMPT

119

e —— e — ~— -

*% Check for and make any required substitutions. *%

OO0

C ICHKRSUBS = 608

608 IBGIRINDX = 9
%% Gtart lonking in column nine (9) for sharpsigns to replace. **

Then use new value of IBGININDX on subsequent iterations.

QOO0

C ICONTCHK = 610
610 DO 612 NAINDX = IBGININDX, MDIM1

IF (JACTFLLE(NAINDX) .EQ. KSHARPSGN) GO TO IS5SCONT
612 CONTINUE

c
C *% There were no sharp signs or there are no more sharp signs. *¥
c Now find the rightmost index of the current command line
C and return to execute string.
C
DO 613 NCINDX = 1, MDIMI
IF (IACTFILE ({ MDIMl + 1) - NCINDX) .KE, KNULL .AND.
+ IACTFILE ((MDIMI + 1) - NCINDX) .NE. KSPACE)
+ GO TO NRMSTOR
613 CONTINUE

C

C NRMSTOR = 614
614 NRTMSTINDX = (MDIMI + 1) - NCINDX

(]

GO TO IEXECUTE

%% Collapse the array about the sharp signs. *%

[N eRe!

C ISCONT = 615

615 NAPIINDX = NAINDX + 1
NAM1INDX = HAINDX - 1
IF (IACTFILE(NAPLINDX) .EQ. KNUML) IVALOFSGN
IF (IACTFILE(NAPIIKDX) .EQ. KNUM2) IVALOFSGN
IF (IACTFILE(NAP1INDX) .EQ. KNUN3) IVALOFSGN =
IF (IACTFILE(NAPLINDX) .EQ. KNUM4} IVALOFSGN
M2MDIML = MDIM1 - 2
DO 616 NBINDX = NAINDX, M2MDIM1

IACTFILE(NBIKDX) = TACTFILE(NBINDX +2)
616 CONTINUE

ton
PN

120

[N]] s NoNeNeNoNe]

(@

(o]

OO0

618
620
622

624

626

630

632

634

636

638

640

642

644

646

Determine the size of the arguwment arr:ys (IARG) and expand *%
the command scquence in IACTFILE to make room for the
substitution of the IARG arrays, where the corresponding
sharpsigns had been. TVALOFSGN is the value of the particular
sharpsign being substituted with IARG.

GO TO (618,620,622,624), IVALOFSGN

ISIZEARG = NDIM2
GO TO 626
ISTZEARG = NDIM3
GO TO 626
TS1ZEARG = NDIM4
GO TO 626
ISIZEARG = NDIMS

Expand the array to make room for the substitution of IARC. *%*

IRGHTMST = MDIM! - ISIZEARG
INCRMAX = IRGHTMST - NAINDX
IACTFILE(IRGHTMST + ISIZEARG) = IACTFILE(IRGHTMST)
DO 628 Ml = 1, INCRMAX
TACTFILE((IRGHTMST - M1) + ISIZEARG) =
IACTFILE(IRGHT!ST - M1)
CONTINUE

Replace cach sharp sign -- #1, #2, #3, and #4 -- if used. *¥
GO TO (630,634,638,642), IVALOFSGN

DO 632 M2 = 1, ISIZEARG

IACTFILE(NAMIINDX + M2) = IARG1(M2)
CONTINUE
GO TO 646
DO 636 M3 = 1, ISIZEARG
IACTFILE(NAMLIIKDX + M3) = IARG2(M3)
CONTINUE
GO TO 646
DO 640 M4 = 1, ISIZEARG
IACTFILE(NAMIINDX + M4) = IARG3(M&4)
CONTINUE
GO TO 646
DO 644 M5 = 1, ISIZEARG
IACTFILE(NAMIINDX + M5) = IARG4(MS5)
CONTINUE
Recalculate IBGININDX for the next iteration. *%

IBGININDX = NAINDX + ISIZEARG

GO TO ICONTCHK

121

c
C %% Before going to the terminal operation mode, inactivate *¥
c (kill) the task SYSIN. “fhen call the program TOTERM.SR,
c which removes defined device codes utilized within SYSIN,
c
C ITCRMOP = 702
702 CALL AKILL{l)
C
CALL TOTERM
¢ 1
C
C STOP END OF THE PROGRAM
C
EXND
C
C ———
C ___
C
C I IR IR R A R I A I I A
c + +
C + END HONITOR.FR +
C + +
c R I I Ik TR T I TR T T S T T T S S S A A e
C
C __ - ——— —— -
C __

122

I T I I S R A R R R

+
BGIN.SR +
#%%% CREATED 3 JULY 1980; REV 01 %*% 4
+
+

+ 4+ o+ o+ o+ o+

SR I SR Tk T T T T T T S S S S S S S A S N S

ARNRNRNRNANK

Progrem BGIN.SR is called from MOMITOR.FR and returns to

3 MONITOR. It is called at the beginning of the MONITOR program
to open devices STTO and $T11 for all subsequent programs.
There are no arguments or parameters that are passed via BGIN.

.TITL BGIN ;Program name - Begin

LENT BGIN ;Enables outside entry into this
;program

LTXTH 1 sPacks ASCII strings left to right

.EXTU ;Undefined variables are treated

;as External Displacement variables

LEXTN .1 ;Provides some FORTRAN initialization
S L g
.NREL ;Normal relocatable space starts
FS.
123

H BEGIN TO OPEN DEVICES

BEGIN : JSR @ .FARL

START: SUB 1,1 ;Load default wmask
LDA 0, NTTO ;Load bytcepointer to STTO
.SYSTM
.OPEN 21 ;0pen 8TTO on channel 21
JMP ERROR
LDA 0, NTT1 ;Load bytepointer to STTI
.SYSTM
.OPEN 22 ;Open S$TTT on channel 22

JMP ERROR
JMP RT ;Jump to return location when complete

ROUTINE TO RETURN TO THE CLI ABNORMALLY

>

)

ERROR: .SYSTH
LERTHN ;Abnormal return - error
JHP ERROR

5 BYTEPOINTERS DLFINED

NTTO: LHLF2 ;Bytepointer to device $TTO
LTXT "STTO"

NITL: L+1%2 ;Bytepointer to device $STTI
LTXT "STTI"

RT: JSR @ .FRET

FS$.=0
TMP=-167

.END BG1N

IR IR K I R R S I A I I I

> + +
; + END BGIN.SR +
+ +

+ + 4+ + 4+ 4+ 4+ 4+ + 4+ 4+ 4+ + 4+ 4+ 4+ 44

124

IR I I A e I I I I R IR I A 2 IR K B T

+
PROMPT. SR +
*%%% CREATED 3 JULY 1980; REV 01 #%¥% +
+
+

+ 4+ + + + +

+ 4+ ++++++H+ A+ o+t

Kwiekxkdenidk

H Program PROMPT.SR is called from MONITOR.FR and returns to

H MONITOR. It is called several times within MONITOR, each timc

5 to provide the user a prompt that information may be entered.

H The prompt character for MONITOR is '">" . There are no arguments
5 or parameters that are passed via PROMPT.

Fddededon kool k

.TITL PROMPT ;Program name - Prompt

.ENT PROMPT ;Enables outside entry into this
;program

LTXTM 1 ;Packs ASCIT strings left to right

.EXTU ;Undefined variables are treated

;as External Displacement variables

LEXTN .I ;Provides some FORTRAN initialization
; ——————————————————————————————————
.NREL sNormal relocatable space starts
FS.
125

3 WRITE PRO!'PT TO S$TTO

3

PROMPT: JSR @ .FARIL

START: SUB 1, 1 ;Load default mask
LDA 0, PRNT ;Load bytepointer to prompt
.SYSTM
.WRL 21 ;Write prompt to channel 21
JHP ERROR
JMP RT ;Jump to return location when complete

5 ROUTIRE TO KETURN TO THE CL1 ARNORMALLY

3
LRRCR: JSYSTM

LERTH ;Abnormal return - error
JMDP ERECR

PRINT: LH1%2 ;Bytepointer to prompt - > (with
JIXT Maisut ;carriage return)

RT: JSR {* JFRET

FS.=0
TMP=-1(7

LERD FTROMPT

I AR TR IR T S S S N T TR S SRR S S S S

H + +
3 + END PROMPT.SR +
; + +

O T T i T T S S S S T A AR TR N e

126

e e e

e e e e e et o b o e

; R T A S T T T T S S S S T S S S SR S S S S S R RS

; + +

: + +

; + CREATED 15 JULY 1980; REV 01 #%¥%% 4+

; + +

; T T TR TR T T T T S S T S S G S S

§ e

§ e e

; KXRNAN R ANK

N Program RLEVLRT.SR 1is called from MOWITOR.FR and always returns

H to the "lccal™ CLI. This program is called by the user entering

; "“L" anywiere in the line that follows a prompt. There are no

5 parameters or argunents that are passed via REVERT.

: Fekdededokhdok %

§ e

e e e e
.TITL REVERT ;Program name - Revert to CLI
.ENT REVERT ;Enables outside entry into this

;program
JTXTM 1 ;Packs ASCII strings left to right
JEXTU ;Undefined variables are treated
;as External Displacement variables

LEXTN .1 ;Provides some FORTRAN initialization

5 e e e e e o o e e e e e e e e o e e ot e e m o e e e e - o
.NREL ;Normal relocatable space starts
FS.

127
o — e e -

; ROTIFY USER 0" RETURN TO CLI

’

REVERYT: JSR C .FARL

SURB 1, 1 ;Load default mask

LDA 0, NOT¥A sLoad bytepointer to message

.SYSTHM

WRIL 21 ;Write message to channel 21 (S$1TO)

JMP ERROR

5 ROUTINL FOR KORMAL RETURN TO THE CLI

>

START: .SYSTM

.RTH sNormal return - no error
JMP ERROR
JMP RT ;Jump to return location vhen couplete

H ROUTIKE 170 RETURR TO THE CLI ABNORIALLY

3

ERROR: .SYSTH
+ERTH sAbnormal return - error
JMP ERROR

5 BYTEPOIRNTER DEFINED

bl

HOTEA: .+1%2 ;Bytepointer to message (IFOTEA)
.TXT "You have returncd to the local CLI mode.<15>"

RT: JSR @ .FRET

FS.=0
TMP=-167

.END REVERT

5 e e - _
; E R A T I S S O S S S T TR 2 T R O T

H + +

5 + END REVERT.SR +

; + +

; S I T Ik T T 2Lk T T S A S T St

; ——————————————————————————— - T ——— o g B S T S - T S e T) W S S G T Wk S . e Al St e ——— et T
; ——

128

[eNeNesNsEs RN

(e N o]

eNsEeEsErEs e s T Es N2 Es s Es e E s s Ee N e s e s R Y EY KR!

')

R T T T T T I S S S S S S S R T S S S 3

+
+ +
+ GETRSPS.FR +
+ *%%% CREATED 8 AUGUST 1980; REV Q0 *¥%%% +
+ +
+ +

R A I A S S A

Program GETRSPS.FR is called by MONITOR.FR and returns to
MOWITOR, Its sole function is to read the selected action file
(seeking that line that begins with the control character "I" in
column one (1)) and store up to two (2) possible responses that
are expected from the "system" when intercommunication is taking
place.

The call to GETRSPS is as follows:

CALL GETRSPS (INTRY,IRSP1,IRSP2,I11SSZ,T2SSZ)
(Integer) INTRY is the user inputed channel number of the
selected action file and is the only parameter passed from

MONITOR to GETRSPS. The remaining parameters are returned from
GLTRSPS to MONITGR. They are:

IRSP1l - one-dimensional array containing first response,
if any

[RSP2 - same for second response, if any

11SSZ - integer that indicates size of IRSPI

12557 - same for IRSP2

129

(] s e NeNe] o eoNoNeoNe] (oo e N DO O0O00

[sEeNeNeNe]

N
W

i

Yk

PARAMERTER MDIMI is the size of the one-dimensional command %%
sequence array. MDIM3 is the size of the one~dimensional
response arrays.

PARAMETER MDIM]1 = 82, MDIN3 = 40

GETRSPS receives an input channel and returns the first and *=
second responses (if any), as well as their sizes.

SUBROUTINE GLTRSPS (INCHAN,11STRSP,I2NDRSP,I1S¥SZ,I2NDSZ)
IINITAR 1is an initialized array that stores the comrnand *%
sequcnce line as read from the action file. It parallels the
use of IACTYFILE in MONITOR.

DIMENSTON TINITAR(MDIML), TI1STRSP(HDIM3), I2NDRSP(MDIM3)

Characters used for comparisons and decisions are data- *%
initialized. They must therefore be declared COMMON.

COMMON /1KONST/ KLTRI, KSPACE, KOMMA

DATA KLTRI,KSPACL,KOMMA/ "<111><40>","<40><40>", "<54><40>"/
Since the response arrays may be empty, they must be *%
cleared. Then, if no responses are provided, the expected

response will be blanks or spaces by default.

DO 1002 JJ = 1, MDIM3

I1STRSP(JJ) = KSPACE
I2NDRSP(JJ) = KSPACL
CONTINUE
Read a line out of the action file and begin search. *%

READ (INCHAN,1006) (IINITAR(II), II = 1, MDIMI1)
FORMAT (82Al1)

130

OO0 O000000

1008

OO0

1010

1012

OO0 0

1014

(o]

kx

If the control character "I" is not encountered, read the — %%
next Jline of the action file unti) such a line is cncountered.
(NOTE: Fach action file must bave a line with control
character "1" or CETRSPS will generate an error condition.)
When the dcsired line is encountercd, begin searching for a
response in column nine (9) and beyond. If nothing is there,
return to the calling program. If a scparator conma is
encountercd, there are two responses. Get the first and then
get the sccond. Otherwise, get the first response only and
return to the calliung program.

IF (IINITARCI) .NE. KLTRI) GO TO]004

DO 1008 ISUBl = 9, IDIMI
IF (TINITAR(ISUB1) .EQ. KSPACE) GO TO 1014
IF (IINITAR(CISUBL) .EQ. KOMMA) GO TO 1010
I1STRSP(ISUB] - 8) = TINITAR(ISUBL)
11STSZ = ISUBl - 8

CONTINUE

Begin the search for the second response, if any. Return 2
to the calling program when completed.

IPISUBl = ISUBL + 1
DO 1012 ISUB2 = IP1SUB1, MDIMI
1F (IINITAR(ISUB2) .EQ. KSPACE .OR. TINITAR(ISUB2)
.EQ. KOMMA) GO TO 1014
I2NDRSP(ISUB2 ~ ISUBLl) = IINITAR(ISUB2)
12NDSZ = 1SUB2 ~ ISUB1
CONTINUE

Before returning to the calling program, the pointer to the *¥
action file must be reset to the beginning of the file. FSEEK
resets the pointer to the beginning.

CALL FSEEK (INCHAN,0)

RETURN
END

+ 4+ + + +

TP IR IR R 2 T T T S S S N A S A .

+
+

END GETRSPS.FR +
) +

+

T R T T R A R S S N N A IR 2R R -

s NeNrEsNeNsNsNeoResNoNeNe]

131

3 i e e i = e e . 2 o o o 4 b S o o = e T e S P o e e . e e S o A o 5+ e o o e e e e e

R I I I I T T T T T S S SR S S S S e

CNVRT. SR
*&%% CREATED 15 JULY 1980; REV 04 **

”»
%

+
+
+
+
+

+ + + + + o+

SRR BE T 2 T I TR TR SR SRS S R T A A

e e e e e e e e e e o et e - S e e = = e e B e = e et o o - o o —

ERRFRRARIN

Program CNVKT.SR is called from MONITOR.FR and returns to

MONITOR. Tt is called after GETRSPS.FR and serves to convert

the FORTRAN array storage to assembly language storage. For example,
the character "A" is stored in FORTRAN array IRSP1 as <101><4GC>,
whereas the same character 1s stored in assembly language as
<0><101>. Thus, this program simply converts betwcen the two.

The call to CKVRT is as follows:

CALL CNVRT (IRSP1,IRSP2,11S5Z,12SSZ)

IRSPI and IRSP2 are one~dimensional FORTRAN arrays that arc passed
from MONITOR to CNVRT. They contain the recponses as found by

the program GLTRSPS. 1I1SSZ and 12SSZ are the size of the response
arrays, and are parameters that are passed frowm CNVRT to NONITOR.
Upon completion of CHVRT, the assembly language responses and thelr
sizes are stored in BUFl, BUF2, .FBl, and .FB2, respectively,
Subscquent programs then use these locations for comparison
purposes, when checking for appropriate responses.

Fedesedek kR
.TITL CNVRT ;Program name - Convert
.ENT CNVRT ;Enables outside entry into
.ENT .BUFl, .BUF2, .FBl, .FB2 ;this program and these locations
LTXTM 1 sPacks ASCII strings left to right
.EXTD .FSUB, .FREDI ;FORTRAN ruatime library routines wust

;be decleared external displacements

.EXTU ;Undefined variables are treated as
;External Displacement variables

LEXTN .1 ;Provides some FORTRAN initialization

132

e i

.ZREL ;Zero relocatable space starts

.FBl: 0 ;Store for the size of first response
.FB2: 0 ;Same for second response
JBUF1: BUF! ;Buffers that contain responses may be
.BUF2: BUF2 ;jaddresscd indirectly via these location
" ——————————————————————————————————

.NREL ;Normal relocateble space starts

FS.

I

CNVRT

b

ESTABLISH THE ARRAYS PASSED IN AS DUMMY ARGUMERTS

: JSR (@ .FARL
JSR ¢ .FRLD ;Redimension an array, passed as dummy
ARY21N ;argument. This is array specifier
@ STORA+1 ;This is array size -~ dumm, argument
STORA+4 ;This is three word stac“ erccificer
JSR @ .FRED
ARY1IN ;S5ame for the other array
@ STORA+0
STORA+7

STORE SIZE OF RESPONSES
LDA 1, @TMP+3, 3 sLoawa size of second array from
STA 1, .FB2 ;s FORTRAN stack - store in .FB2
LDA 1, (GTMP+2, 3 ;Same for first array, but
STA 1, .FBIL ;store in .FBl

133

H SELECT EACH ELEMENT OF TLE FIRST ARRAY

LDA O, MINI2SUB ;Load subscript omne
STA 0, THP+12, 3 sStore on stack
JMP STRTI1 ;Start iterations

IRCIS: LDA 0, TMP+12, 3 ;On repcated passes, get the
INC 0, O ;last subscript and increment it
STA 0, THP+12, 3 ;Store new subscript

STRT1: LDA 1, @TMP+2, 3 ;Load maximum subscript
SUBZ 0, 1, 3NC ;If maximum excceded,
JMP NXTRSP ;start same type iteration on next array
JSR @ .FSUB ;Otherwise, get the array element
3 ;Number of arguments for library call
STORA+7 ;Stack specifier for first array
STORP+1 ;Temporary location for FSUB result
STORA+12 ;FORTRAN address of subscript

5 CONVERT FROM FORTRAN TO ASSEMBLY LANGUAGE STORACE

LDA 0, @GTMPP+1, 3 ;Load selected array element

LDA 2, MSKSAP ;Delete second byte, strip parity from
ANDS 2, 0 ;first byte, and swap bytes

STA 0, @BUFIPTR ;Store result in BUFI1

LDA 1, BUF1PTR ;Load pointer to BUFF1

INC 1, 1 ;Increment and store the new

S1A 1, BUFIPIR spointer

JMP INCIS ;Continue the next iteration

H ROUTINE TO RETURN TO THE CLI ABNORMALLY

.
1

ERROR: .SYSTM
.ERTN ;Abnormal return - error
JMP ERROR

134

-

5 DEFINE INLTIAL SUBSCRIPT SIZE YOR BOTH ARRAYS

>
MIN12SUB:1

H REPEAT THE ARBOVE PROCEDURE FOR THE SECOND ARRAY

" —————————————————————————
NXTRSP: LDA 0, MINI2SUB

STA 0, TMP+12, 3

JMP STRT2

INC2S: LDA 0, TMP+12, 3
INC 0, O
STA 0, TMP+12, 3

STRT2: LDA 1, @TMP+3, 3
SUBZ 0, 1, SKNC
JMP RETN ;Return to calling program

JSR @ .FSUB
3

STORA+4
STORP+2
STORA+12

LDA 0, @TMPP+2, 3
LDA 2, MSKSAP
ANDS 2, 0

STA 0, G@BUF2PTR ;Store result in BUF2
LDA 1, BUF2PIR

INC 1, 1

STA 1, BUF2PTR

JMP INC2S

B DEFINE POINTERS, VARAIBLLES, AN BURFERS
5 e m e e e e m e e e e e e e - o
MSKGAP: 077400 yMask for stripping parity, deloting

;second byte

BUF1PTR:RUF] ;Pointer to BUFI
BUF2PTR:BUF2 ;jPolnter to BUF2
BUFL: .BLK 40. Define buffer sizes

BUKF2: .BLIT 40.

RETN: JSR G .FRET

H SPECIIY THE ARRAYS
S
ARYZ1k: 3 ;This is - 2%(number of subscripts)+]
401 ;This 1s ~ 400~1+1, Tenstbh=1 and types]
MIKI2SUB 3yThis is lowver subscript sirze
{@STORA+3 ;This 1s higher subscript size
ARY1IK: 3 ;This 1is the sare for first arrecy
401
MIN]12SUB
@STURA+2
5 DEI'INE STACK PARAMETFLS
S T T T IR
FS.=17 ;Frame size for all stack variables
TMP=-167 ;Middle of the user”s stack
STORA=200 .I'P
TMPP=THP+12 ;First word available for temporary
ystorage
STORF=STORA+12

.END CLVRT

»

; ———
; R R T S R R TR T S A N B B

: + +

’ + END CNVRT.SR +

H + +

; P R P A R R R R N N B N I

; ——
T ettt

136

aooaocacoooc

[N @]

sHeoNsNosNoNoNeNoNeNoNesNesNoNoNoNoNsNoNoNeNoNe)

+ 4+ + + 4+ +

L A R R A A R R A I I

+

WRTTSYSTM.FR +
#*%%% CREATED 8 AUGUST 1980; REV 00 #w¥#s

+

+ 4+ + 4+ 4+ttt 4+

FkdehkRolkRk

Program WRITSYSTM.FR is called by MONITOR.FR and returns to
MONITOR, whenever a command scquence from an action {ile is
ready to be sent to the "system.'" WRITSYSTH provides a
transition to and from an assembly language subroutine that
actually transmits data to the "system." The call to
WRITSYST! 1s as follows:

CALL WRITSYSTM (IACTFILE,NRTMSTIKDY,$602)
IACTFILE is one line frou the action file that is to be ecnt
to the "system.'" HRTHSTINDX is the size of the one-dimensional
array IACTFILL, and $602 is the returnm line nuuber in MOMNiTOR
that will next be executed upon return from WRITSYST!. All
parancters arc passed to WRITSYSIM f{rom MONITOR.

L s e]

137

[sNsNeNe]

oo

aQ

COOO0O00

5 OVRITEYSTY recelves an loput array, the diwcension of that wE
array, and an assigned dunmy return variable.

SUBROUTINE WRITSYS7M (INIARRAY, IIDIMAR, T1DUMRTH)
DINENSTOR ILIARRAY(11DIMAR)

** WRSYS actually transuits the contents of INIARRAY (of size #*%*
IKIDI¥AR) to the “system."
CALT., WrSYS (IN1ARRAY, TI1DIKAR)
*% Return to the statement number passed in I1DUMRTN *%
RETURN I1DUMRTN
END
IR R I R T N T T A T R T I N SR A S
+ +
+ END WRITSYSTHM.FR +
+ +
LR I T T SR N SR 0 N T SR A S S
138

LR IR T T S S SN R T SR IR A T T S

+
WRSYS.SR +
*%%% CRFATED 15 JULY 1980; REV 03 ¥%#%% +
+
+

+ 4+ o+ o+ o+

R T TR T T T T T S N S R S S N A

Feddrdk et

Program WRSYS.SR is called from VRITSYST!.FR and returns to
WRITSYSTIH. 1Its sole function is to tranemit data tc the "system."
The data is always a command of the action {ile. The call to
WRSYS 1is as follows:

CALL WRSYS (IN1ARRAY, IIDIMAR)
IRIARPAY is one line from the action file that is to be sent to
the "system." TIIDIMAR is the size of the one-dimcentional array
IN1ARRAY. Both these parameters are passed from WRITSYSTM to
WRSYS.

Feddedekh bRk

.TITL WRSYS ;Program name - Write to System

+.ENT WRSYS ;Enables outside entry into this
;program

LTXTM 1 sPacks ASCII strings l¢ft to right

.EXTD .FSUB, .FREDI, .LDI sFORTRAN runtime libr;ry routines must

;be declared external displacenients

.EXTU ;Undefined variables are treated as
;External Displacement variables

LEXTN .I, .ASUSP ;.1 provides some FORTRAN initialization
; »ASUSP is a task call for suspension
;and must be declared external normal

.NREL ;Normal relocatable space starts

139

WRSYS:

>

INCSUB:

START:

’

ESTABLISH TlHit, ARRAY PASSED TN AS

JSR C .FARL

JSR @ .FRLD
ARYIN

¢ STORA+O
STORA+2

SELECT EACH ELEMENT OF THE ARRAY

LDA 0, LOUSUD
STA 0, TMP+5, 3
JMP START

LDA 0, TiP+5, 3
INC 0, 0
STA 0, T!P+5, 3

LDA 1, OT:P+1l, 3
SUBZ 0, 1, ShC
JMP RET

JSR @ .FSUB
3

STORA+2
STORP+1
STORA+S

LDA O, @TMPP+1, 3
LDA 2, MSHIT
ANDS 2, 0

OUTPUT CHARACTER TO SYSTEM

SKPBZ TTO1
JMP -1

DOAS 0, TTOl
JMP INCSUB

5 DEFINE VARIABLFS

CR:

LOWSUB:

MSKI1T:

TSKPRI:
MINSUB:

15
11

077400

0
!

DUMMY ARGUMENT

;Redimension an array, passed as dunmy
sargument. Thie is array specifier
;This 1s arvay size - dummy arguaent
;This is three word stack specifier

;Load subscript one
;Store on stack
;Start iterations

;On repeated passes, get the
;last subscript and increment it
;Store new subscript

;Load maximum subscript
; If maximun exceeded,
;return to calling program

;Otherwise, get the array elenment
iNumber of arguments for libravy cell
;Stack specificer for the array
;Temporary location for FSUB resnult

s FORTRAN address of subscript

CONVERT FROM FCRTRAN TO ASSFMBLY LANGUAGE

- e = e e e e = e e e e e = e e e e e e e

;Load selected array element
;Delete second byte, strip parity from
;first byte, and swap bytes

31f the output line (channcl device $P70
;1s busy, try again

;Otherwise, output the character
;Continue the next iteration

;Carriage return is octal 15

;9 decimal - subscript that starts
;action file text

;Mask for stripping parity, deleting
;second byte

;MONITOR s task priority

;The lower subscript starts at one

140

i SPECIFY TIIE ARRAY
; —————————
ARY1L: 3

401

MINSUB

; OUTPUT CARRIAGEL LETURN,
;
RET: LDA 0, CR

SKPBZ TIOL

JMP -1

5 DEFTNE STACK PARAMETERS

ESTORA+]

DOAS 0, TTO1

LDA 0, TSKPRI
LASUSP

JSR @ .FRET

THP=-167
STORA=200+THP
THPP=TIP+5
STORP=:STORA+5

.END WRSYS

SUSTEND MON

;This
;This
;This
;This

is
1s
1s
1s

ITOR,

- 2%(nunber of subscripts)+l

~ 400%1+1, lenpti=] and tyvpe =1
lower subscript sive
higher subscript size

AND RETURN

;load carriage return
;O0utput it when $1TO0l not busy

;Load MONITOR task priority

;Suspend HONITOR - task SYSIK wiil
yready MON1TOR

;Frame size for all stack variables

sMiddle of the user”s stack

;First word available for temporary

ystorage

Y e e e e e e e e e o e e e s e o e S o e o e e —

>
3
H +
M +
o +
’
s

END WRSYS.SR

R G T I T A A T R S T

+
+
+

I T T T T T TN SN S S S T S A

141

Cmmm—e e e o - o e A 4 o o e A e e e S e i o s e n ¢ e e e S e ot o o b e o e
C __
C

c 2 T I T R T I N T T T T S T T

C + 4

C + WRITLOCAT. . FR +

C + *%%h CREATED 8 AUCUST 1980; REV 00 *%ww¢

C + +

C I I A T S S S . Tk A 2 2 A S S S A S S S

C

G e e e e e e e et e e 0 e e o b
(e e e e

esNeNeoEoEsEeoNeoNoNoRsNeoNeoNeoNoNoNaoNoNo NNl

Program WRITLOCAL.FR 1is called by HONITOR.FR and returns to
HONITOR, whenever a cornand scquence {rom an action file is
ready to be sent to the "local" terminal. WRIILOCAL sinply
writes a string contained in array INZATRAY to the "local"
terminal. The call to WRITLOCAL is as followe:

CALL WRITLOCAL (IACTFILE,MDINL,$602)

TACTFILE is one line {rom the action file that 1s to be sent
b

to the "local" terminal. MDIINl is the size of the onc-dimontional
array IACTFILE, and $602 is the »cturn line unuber in MONITOR

that will be next executed upon return {ron WRITLUCAL., All
parameters are passed from I'CHITOR to WAlTLOCAL.

142

*% WYRITLOCAL receives an input array, the dimension of that Wk
array,and an assigned dunmy return variable.

OO0

SUBROUTINE VRITLOCAL (IN2ARRAY,I2DIMAR,I2DUMRTN)
DIMENSION IN2ARRAY(I2DIMAR)

** The contents of the action file line are written to channel *%
10, the "local" terminal device (STTO).

o000

WRITE (10, 2001) (IN2ARRAY(J1), J1 = 3, T2DIMAR)
2001 FORMAT (80A1)

c
c %% Return to the statement number passed in T2DUMRTR. e
C
RETURN I2DUMRTN
END
c
C——==—- —_— - — e e e e e e e e e e
C__ e o e e e e e e S o o o o A St o e i e P G e B e G2 £ 4 S A R e e e G o ot G B S e 0
C
C T T I T I T T S S ST T O
C + +
c o+ END VRITLOCAL.FR +
C + +
C O I T T T Tk Tk T T S T T N S B
C
G e e e e e - —
oo e e e e e

143

[eNe]

(oM@

PR IE K T T T S T S A R A A

+
READLVRITS.FR +
*%%% CREATED 8 AUCUST 1980; RLV 00 ##%%i4

.'.

+

+ 4+ + + + o+

R I I I R R R

TRRRNIRNKE

Program READLURITS.FR is called by MONITOR.FR and returns to
MONITOR, whc¢never a command sequence from an action file
indicates that somcthing 1s to be read {rom the "local" termi
and a carralage return is to be sent to the "system."
READLWRITS prov:des a transition to and from an assembly
language subroutine that actually reads data fron the "local"
terminal and writes a carriage return to the "system."

The call to READLWRITS 1s as followus:

CALL READIWRITS {$602)

The $602 is the retuvn line number in MONITOR that will next
be executed upon return from READLWRITS.

%% READLWRITS receives an assigned dummy return variable.
SUBROUTINE KEADLURITS (I3DUMRTN)

*% RDAWR actually implements the read and write functions.
CALL RDAWR

#*% Return to the statement number passed in I3DUMRTN.

RETURN I3DUMRTN
END

OO0 0O0 ? o
|
]

PR T T T T T S T S N S S JIE S S S S S S

+ +
+ END READLWRITS.FR +
+ +

+

R AR T T 2 2 T T T e R Ak A A

nal

*%

*k

SN AR TR T TR T T S S S T S A T SR SR N S S N

+
RDAWR.SR +
%%%% CREATED 3 JULY 1980; REV 03 w#¥¥ 4
+
+

+ o+ o+ o+ o+

I I IR I I T 2R T TR S S S N A

HHBTRRERNRK

5 Program RDAWR.SR is called from READLWRITS.FR and returms to
H READLWRITS. Its sole purpose is to awailt any keyboard input
; and then transmit a carriage return to the "system." This

5 routine is only called during LOGON processing. There are no
5 arguments or parameters that are passed via RDAWR,

145

LER:

LTITL RDAVR

LENT RDAUR

JIXTM 1

.EXTU

LEXTN .1, .ASUSP

;Progran name - Read And Write

;Enables outside entry into this
;program

;Packs ASCIT strings left to right

;Undefined variables are trcated
;as External Displacement variables

3y+1 provides sowe FORTRAL initialization
; JASUSP is a task call for suspension
sand must be declered external normal

.ZREL

ERROR

sZero relocatable space starts

;Access to ERROR may be gained via
;indirect addressing to this location

FS.

WAIT FOR KEYBOARD INPUT

RDAWR: JSR @ .FARL

RERD:

. SYSTM
.GCHAR
JMP @ LER

146

;Normal relocatable space starts

;Get input character from keyboard

B SEND CARRIAGE RETURN TO STTOI!
> e e e
LDA 0, CR yLoad a carriage return
.SYSTH
.PCHAR ;Output carriage return to $TI1O
JHMP ¢ LFR
SKPBRZ 1T0] ;Is STTOLl busy?
JMP -1 ;Yes = try apain
DOAS 0, TTUl ;No = output carriage return to S$TTO!
; SUSPERD THEF TASK NMOLNTITOR TO ALLOW SYSIH TO EXECUTE
; _— - e T A T R I
LDA 0, TSKPRI ;Load NONITOR s task priority (0)
LASUSP ;Suspend MOWITOR until readied in
stask SYSIN
JMP RTX ;Jump to rcturn location when complete
5 DEFINE VARTIABRLFS
PR G U
TSKPR1: O ;MONITOR s task priority is zero
CR: 15 ;A carriage return is octal 15

3 ROUTINE TO RETURR TO THE CLI ABLORMALLY

b4

ERROR: .SYSTH
.ERTHN ;Abnormal return - error
JMP @ .ER

»
RTN: JSR € .FRET

FS.=0
TMP=-167

.END RDAWR

R R T T T S I R IR T R N

H + +
3 + END RDAWR.SR +
H + +

IR T T S R R T SR R R N I R Y

S e b o e o e o i e = B e B e s o e e D B o e A - o M G - — e — = = ———

147

[oNoRsNoNeNeNoNel

(o]

«ReNeNoNsNeNsoNsNeNsRoNoNoNoNeoNeNoNoNoNesNsNeoNoNoNeoNeoNeNe!l

C _______________________ - e e i o e A o e e b e - . e . Y e
I I I S S S R R R R
+ +
+ SENDFILE.Fi +
+ xwis CREATED 8 AUGUST 1980; REV 00 i
+ +
T I I T S N I S S I I IR I A

FRNFoRRINNk

Program SENDF1LE.FR is called by MONITOR.FR and returns to
MONITOR, whenever a command sequence from an action file

requires a "local" disk file to be sent to the "system."

SERDFILE uses the RDOS file CLI.CM to "send" action file commands
ro the "local" system. Thus, the action file cormmmand is inserted
into CLI.C!H and then a program swap takes place to execute that
coumand. When swapping takes place, functions within tasks are
disabled (such as .IDEF). Therefore, the task SYSIN is inactivated
(killed) and reactivated before and after the swap -~ program
EXCLI.SR. VFinally, program GETFILE.SR actually transmits the

data retricved from the "local” disk and sends it to the

“"system." The call to SENDFILE is as follows:

CALL SENDFILE (TIACTFILE,MDIML,$602)

IACTFILE is one line from the action file that is to be

acted upon by the "local" system, MDIMl is the size of the
onc-dimensional array IACTFILE, and $602 is the return line
number in MONITOR that will next be executed upon return from
SENDFILE. All parameters are passed to SENDFILE from MONITOR.

148

OO0
9

c o
C
c
C
C
C x
C
C
C
c
C
C xw
C
c
C
C W
c
4001
C
C wx%
c
C

SENDFILE receives an input array, the dimension of that k%
array, and an assigued dumny return variable.

SULROUTINE SFNUFILE (INGARRAY,I4DIMAR, I4DUMRTN)

SYSIN.SR is the task program that monitors "system" input *%*
and was activated by MONITOR. As it is to be killed and then
reactivated, DG FORTRAN required that it be externally defined

EXTERNAL SYSIN
DIMENSION IK4ARRAY(I4DIMAR)

This call creates file CLI.CM. 1If it already exists, an *x
error of 12 is returned in KIRR1. If the call ig okay, an
error of 1 is returned. Any other error is printed out for
reference. This insures that CLL.CH is available.

CALL CFILW ("CLT.CH",2,KERRI)
IF (KERRl .NE. 1 .AND., KERR1 .ME. 12) TYPL “KERRl IS ",KERRI

This call cpens file CLI.CM or channel 25. State the error *¥
condition if not cpcned properly.

CALL OPEN (25,"CLI.CM",2,KERR2,82)
1¥ (KERR2 .NE. 1) TYPE "KERR2 IS ", KERR2Z

o

Insert command sequcnce from action file into CLI.CM. *

WRITE (25,4001) (IN4ARRAY(K1), X1 = 3, I4DIMAR)
FORMAT (1H , 80Al)

Close CLI.CM so it can be deleted in EXCLI.SR, after it is *¥%
no longer neceded.

CALL CLOSE (25,KERR3)
IF (KERR3 .NE. 1) TYPE "KERR3 IS ", KERR3

149

(@} s NeoRoNeoNoNe] aacoa

(@]

[oHe]

(@]

[M o]

s NeRsNeoNeNeoNe Nl

*%

Before executing the swap (EXCLT), inactivate SYSil.
SYSIN is the only task with priority one (1).

CALL AKILL (1)

EXCLI swaps to level two (2) to execute the instruction
just inserted into CLI.CH. Lcvel two (2) is the RDOS CLI.
Upon coumpletion of the swapped program, conirol returns to
next instruction in this program.

CALL EXCLI

Reactivate SYSIN just as it was before the swap.

CALL ITASK (SYSIN,10,1,KERR4,1)
IF (KERR4 .NE. 1) TYPE "K¥RR4 IS ", KERR4

GETFILE.SR transmits the data on file QQVV to the "system.'

CALL GETFTILE
Return to the statement number passed in I4DUMRTN.

RETURN T14DUMRTN
ERD

the

e
' "~

++ + 4+ttt A+ 4

+
+
+

+
END SENDFILE.FR +
+

R T O T B TE TE SN S R S S S S A A A I kA

150

R T R T T T T SR S N S A S S 3

+

+

EXCLI.SR +
WEE%E CREATED 22 JULY 19805 REV 01 #wds 4

+
+

TAERARANTE

Program LYXCL1.SR 1s called from SENDFILE.FP and RICEVFILL.FR,
and returns to SENDFILL and/or RECEVFILE, whichever program
calied EXCLI last. The purpose of EXCLL 1s to execute the

RDOS CLI on level two (2) by swappir, the CLI in and swapping out
EXCL1. A command {ronm the action file has been inserted into
CLI.CM by either SENDFILE or RECEVFILE; this swap exccutes

these cormands. EXCLT also appends a POP cormand in the CLI.CM
file, in order to return to level one (1) - the program EXCLI -
upon complction of the command sequence inserted into CLILCIH.
There are no arguments or parameterc that are passed via EXCLI,

e e e e et o o e e S e ot Y B0 o e o o e et o A 4 o e S o o

LTITL EXCLI sProgram name - Execute the CLI

.ENT EXCLI 3Enables oulside entry into this
;brogram

.TXTM 1 ;Packs ASCIT strings left to right

.EXTU ;Undefined variables are treated as

;External Displacement variables

LEXTN .1 ;Provides sowme FORTRAN initialization
.NREL ;Normal relocatable space starts
FS.

151

b

¥

ADD THE POP COMMAND TO FILE CLI.CM

JSR (' .FARL
SUB 1,1

LDA 0, CLICM
.SYSTH
LAPPEND 23
JMP ER

LDA 0, CMAND
LDA 1, RCOUKT

.SYSTH
.WRS 23
JMP ER
LSYSTH
.CLOSE
JMP ER

23

CALY. SVAP TO EXECUTE THE CL1

LDA 0, CLISV
SUB 1, 1
SUBZL 2, 2
.SYSTH

.EXEC

JMP ER

JUP RT

syLoad
sLoad

;Open

;Load
yLoad

the default mask
the bytepointer to file CLI.CM

CLI.CM for appending on channel 23

bytepointer to additional coummand
nunber of bytes to be written

;Write the added coimmand to CLI.CH

;Now close file CLI.CH

;Load
;Load
s Send
; Swap

yJump

ROUTINE TO RETURN TO THE CLI ABNORMALLY

ER: .SYSTH
.ERTN
JMP ER
; DEFINE BYTEPOINTERS, ETC.
S e e e o e e m e m e o -
CLISV: .+1%2
.TXT "CLI.SV"
CLICM: .+1%2
.TXT "CLI.cH"
CMAND: .+1%2
LTXT ";POP<1S5S>"
BCOUNT: (BCOUNT-CMAND)*2

152

bytepcinter to file CLT.SV
zero - indicates swap
no message to swap program

to CLI on level two (2)

to return location when complete

;Abnormal return -~ error

;Bytepointer to file CLI.SV

;Bytepointer to file CLI.CM

;Bytepointer to POP command

sNumber of bytes in POP command

5 DULETE PILE CLILCH BEFORE RETURNING TO CALLING PROCGRAM

RT: LDA 0, CLICH ;load bytepointer to file CLI.CH
.SYSTH
LDELET ;Pelete file CLI.CH
JMP ER

+
+
+

JSR @ .FRIT

FS.=0
THP=~167

.END EXCLI

S Tk A T S S T S S T S S S S S S S SR T A

END EXCLI.SR +

T A T S I S T T N AR

153

; FE T S S S T S S ST T T S S A S S S S S N AU
; + +
5 + GLTKFTLE,.SR +
3 + ¥%%¥% CRLATED 26 JULY 1980; REV 02 #wxw +
; + +

I S T T S N St S S R S A T S S S S N

Progrem GETFILE.SR is called frou SENDFILE.FR and returns to

; SERDF1LE. Tt is called after EXCULI has placed a disk file of
; the "local" system into file QQVV. 1t gets this file and

; outputs it to the "systew'" character by character. 1t calls
; upon a system call to determine the User File Discription

H status, which provides the size of the file. There are no

H arguments or parancters that are passed via CETIILE.

; Sededk e d Rl kK

.TITL GETFILE ;Program nane - Get File

.ENT CETFI1LE ;Enables outside entry into this
;program

JTXTH 1 ;Packs ASCII strings left to right

LEXTU ;Undefined varaiblecs zre treated as
;External Displacement variables

LEXTH .1 ;Provides some FORTRAN initialization
T Ty
.NREL ;Normal relocatable space starts
4
FS.
y
154

3

’

OPEL AND FIND STATUS OF FILE QQVV

CrIFILL:J5R (¢ .FARL

’

3

LDA 0, NAMOFFL
sup 1, 1
LSYSTH

LOPEN 26

JMP TR

LVA 1, STRLOC
.SYSTH
.STAT
JMP ER

JMP CALCSZ

READ QQVV BY PORTIONS AND SEND QUT

AGNRD: 1.DA 3, SZOFFL

LDA 1, BYTSZ
supzZ# 1, 3, St

IS

JHP LSTRD

STA 1, WRSSZ
LDA 0, PTRCNTS
.SYSTM

.RDS 26

Jup ER

JSR SENDIT

LDA 1, BYTSZ

LDA 3, SZOFFL
sup 1, 3

STA 3, SZOFFL
JMP AGERD

LSTRD: ©LDA O, PTRCNTS

LDA 1, SZOFFL
STA 1, WRSSZ
.SYSTM

.RDS 26

JMP ER

JSR SLNDIT
LDA 0, CR
SKPBZ TTO1

JMP -]
DOAS 0, TTOL

155

;Load bytepointer to {ile QQVV
;Load default wask

;0pen file QQVV on channel 26

;Load pointer to beginning of UFD store

;Get the UFD status of QQVV

sNow calculate the size of QQVVY

;Load the size of file QQVV

;Load the sive of the CITS store
3Is current size of file greater
sthan size of CNTS?

sNo ~ read QQVV for the last time

3Yes ~ rcad at least tuo Linces
;Load bytepointer to buffer CiTS8

;Read a portion of QQVV into (LTS

;Send rhis portion out

;Load the size of the CHTS buffer

;and the current size of QQVV not read
;Find the difference betwveen the

ytwo and store in SZOFYL

;Return to read the next portion

;Load tlie bytepointer to CITS
;Load the current size of QQVV

;Store this size

;Read in the last portion of QQVV

;Send this portion also
;Load a carriage relurn
3 1f the output line is not busy,

;send a carria;e return as the last
scharacter

3

TRYCLOS:LDA O, NAMOFFL

.SYSTM
.CLOSE 26
JMP CHKERR

.SYSTM
.DELET
JMP ER
JMP RETERN
LDA
SUB

JMP
JMP

CHKERR: 1, .ERFIU
2, 1, SNR
TRYCLOS

ER

.SYSTM
.ERTN
JMP ER

.ERFIU: ERFIU

NAMOFFL: .+1%2
.TXT "DPOF:DIALOG:QQVV"

STRLOC: UFDSTR

UFDSTR: .BLK 22
SZOFFL: O
BYTSZ: 122

PTRINIT:CNTS
TEXTPTR:CNTS
PTRCNTS:CNTS*2
WRSSZ: O

156

ONCE COMPLETE, CLOSE AND DELETE QQVV

;Load bytepointer to QQVV

;Close file QQVV
;Check to see if there is an expected
jerror

;yIf not, delete QQVV

;Then return to the calling program

;Is QQVV still in use?

;Compare to error code ERFIU

;Yes - return to try for closing again
,Otherwise, state the unexpected error

ROUTINE TO RETURN TO THE CLI ABNORMALLY

;Abnormal return - error

DEFINE VARIABLES, BYTEPOINTERS, AND BUFFERS

;ERFIU = 60, file in use

;Bytepointer to file QQVV

;Pointer to UFD store
;18 decimal UFD word store

;Store for current size of file
;82 decimal bytes - CNTS buffer
;Pointer to the beginning of CNTS
;Pointer to text entries for CNTS
;Bytepointer to CNTS buffer
;Number of bytes to be written

b

b

CALCSZ:

MULT:

ADORCE:

b

b

ONEDLI:
ZERO:
CNTER:
SAVES:
SAVE2:
SAVE]:
SAVIO:
SAVEC:
CR:

CALCUTATE THE S1ZE Ol QQVV

LDA 3, ZERO ;Load zero (0)

LDA 1, UFDSTR+10 ;Load the number of the last

SUB# 3, 1, SKR yblock in QQVV. Is it zero?

JMP ADONCE 3Yes — just calculate once the size
STA 1, CHTER ;o — load the number of blocks in
LDA 0, ZERO ;eounter and load zero

LDA 2, ONEBLK ;Load the size of one block

ADD 2, 0O ;Multiply the number of blocks

DS7 CMNTER ;by the nunber of bytes in a block
JMP MULT ;Continue till 211 blocks are included
LDA 1, UFDSTR+11 ;Load the nuaber of bytes in the
ADD 1, O ;last block - add to the total

STA 0, SZOFrL ;Store total in size of file

JMP AGHRD ;Return to read portions of QQVV
LDA 2, UFDSTR+11 ;If just one block, store the

STA 2, SZOFFL ;number of bytes in size of file
JMP AGERD ;Return to read the portions

DEFIRE VARIABLES ALD STORAGE LOCATIONS

1000 ;One block is 512 decimal bytes

0

0 ;Counter storage location

0 ;Storage location for accumulator
0 33, 2, 1, 0, and the carry bit

0

0

0

15 ;Carriage return is an octal 15

157

SEND FILL GQVV OUT CUARACTER LY CHARACTER

3

SENDIT: STA 3, SAVE3 ;Upon entering routine, store
STA 2, SAVE2 saccumulators and carry bit
STA 1, SAVLE]
STA 0, SAVEQ
MOVL 0, 0
STA 0, SAVLC

LDA 1, WRSSZ ;Load number of bytes to write

MOVZR 1, 1 ;Divide the number by two, as two

STA 1, VRSSZ ;bytes will be written per iteration
REPT: LDA 0, CGTEXTPTR ;Load pointer to text character

LDA 1, MSKI ;Load wask to isolate left byte

ANDS 1, 0 ;Strip parity and swap

SKPEZ TTOl ;If output line not busy, output

JHMp -1 ;this isolated character

DOAS 0, TTOl

LDA 0, GTEXTPTR ;Load same text

LDA 1, MSK2 ;Load mask to isolatc right byte

AND 1, 0O ;Strip parity

SKPBZ TTO1 ;O0utput this character when output

JMP .-1 ;line not busy

DOAS 0, TTOl1

LDA 3, TEXTPIR ;Load the pointer to the text

INC 3, 3 ;Increment the pointer

STA 3, TEXTPTR

DSZ WRSSZ ;Have the words all been sent?

JMP REPT 3;No - return and repeat for the next
sword

LDA 1, PTRINIT ;Yes - load the pointer to beginning of

STA 1, TEXTPTR stext buffer - CNTS

LDA 0, SAVEC ;Restore accumulators and carry

1OVR 0, 0

LDA 0, SAVEQ
LDA 1, SAVEL
LDA 2, SAVE2
LDA 3, SAVE3

JMP 0, 3 " 3Return to next line from location
;in which subroutine called

158

5 DEFINE MASKS

3

MSK1: 177400 yMask to isolate left byte
MSK2: 000377 sMask to isolute right byte

CNTS: .BLK 122 ;82 decimal bytes of storage

FS.=0
TMP=~167

.END GETFILL

S R T S T 2 I S S S S A

; + +
5 + END GETFILE.SR +
+ +

IR T S N A R A I I I I I IR A B T A

159

C __
C ——
C

C IR IR IR R R R

C + +

C + READYREAD. IR +

c + %%#% CREATLD 9 AUGUST 1980; REV 00 #*%%%x+

C + +

C I IR R T S R A R S A A A R R

C

C __
C __
C

C Fekedek RSk

C

C Program READYREAD.FR is called by MONITOR.FR and returns to

C MONITOR, whenever a disk file needs te be prepared (i.e.,

C created) to accept data frow the "system." File VVQQ is creatocd
c to receive the data from the "system", which will transpire on the
C next execution of task call SYSIN.SK. This latter action is

C trigpercd by a repeated call to open the file VVQQ, which only
C succeeds after VVQQ has been created. The call to READYREAD

C is as follows:

C

c CALL READYREAD ($602)

C

c The $602 is the return line number in MOKITOR that will next

C be executed upon return from RFEADYREAD.

C

C R RTRN TN

C

C _____________ e e e ot 4 e e e o ————— o o e e e e et e B e e
C __

160

[sEe NN N oMo}

OO0

OOOO0O0O0O00O00O00

** READYREAD receives an assigned durmy return variable. **
SUBROUTINE READYREAD (IS5DUMRTN)
** This call creates file VVQQ, that will be accepting data *&
from the "system." Data will actually be entered only when

VVQQ is opened by SYSIN.SR.

CALL CFILW ("DPOF:DIALOG:VVQQ",2,IERRI!)
IF (IERR1 .NE. 1) TYPE "IERRI IS ", IERRI

** Return to the statement number passed in ISDUMRTN. **

RETURN I5DUMRTN
END

I R R E R E e

+ +
+ END READYREAD.FR +
+ +

AN R R I R 25 U B R I R B I B K R R K TR R R I N

161

s ReNsNoNsNeNoNele ool

sEeNoNesNeoNosNoNeoNosNoNoNeoNosNeoNoNRoNoNoNoNoNeNsNoNeNeReoNeoNe

L I R S A TIE T S T A
+ +
+ RECEVI'TTE.FR +
+ %%%% CREATED 9 AUGUST 1980; REV 00 #¥¥%4
+ +
T T A R A R

Fedededeo SRR

Program RECEVFILE.FR is called by NHONITOR.FR and returns to
MONITOR, whenever a command sequence from an action {ile
requires a "local" disk file to be created to receive data
transmitted from the "system." RECLVFILE uses the RDOS file
CLI.Ci! to "send" action file commands to the "local system.
Thus, the action file command is inserted into CLI.Cif and then
a progran swap takes place to execute that cormand. When
swapping takes place, functions within tasks are disabled
(such as .IDLF). Thercfore, the task SYSIN is inactivated
(killed) and reactivated before and after the swap - program
EXCLI.SR. Lastly, RECEVFILE deletes the temporary disk file
VVQQ, as it is no longer necded. The call to RECEVFLLE is as
follows:

CALL RECEVFILE (IACTFILE,MDINMI,S$602)

IACTFILE 1s on~ line from the action file that is to be

acted upon by the "local" system. MDIM] is the size of the
one-dimcntional arrrey IACTFI1LE, and $502 is the return line
number in MONITOR that will be next executed upon return from
RECEVFILE. All paramecters are passed from MONITOR to RECEVFILE.

Feddedododekdohok

162

4

[sNeNeoNe]

C
C Sy
C
c
C
C
C *7%
C
C
C
C
C
C xR
C
c
C
C *%
C
6001
C
C *%
C
C
c

RECEVFILE reccives an input array, the dimension of that Lid
array, and an assigned dummy return variable.

SUBROUTINE RECEVFILEL (INGARRAY,I6DIMAR,16DUMNRTH)

SYSIN.SR is the task program that monitors "system'" input oK
and was activated by MNONLTOR, As it is to be killed and then

reactivatcd, DG FORTRAN requires that it be externally defined.

EXTERNAL SYSIN
DIMENSION TLGARRAY(I6DIMAR)

This call creates file CLT.CM. If it already exists, an *E
error of 12 is returrced in JERRl. If the call is okay, an
error of 1 is recturned. Any other error 1is printed out for
reference. This insures that CLI.CHM is available.

CALL CFILVW ("CLI.CM",2,JERR1)
IF (JERR1 .NE. 1 .AND. JERRl .ME. 12) TYPE "“JERRIl IS ', JERRI

This call opens file CLI.CH on channel 25. State the error *¥%
condition if not opened properly.

CALL OPEN (25,"CLT.CM",2,JERR2,82)
IF (JERR2 .ME. 1) TYPE "JERR2 1$ ", JERR2

Insert command sequence from action file into CLI.CM. *%

WRITE (25,6001) (IK6ARRAY(L1), LI = 3, I6DIMAR)
FORMAT (11 , 80Al)

Close CLI.CH so it can be deleted in EXCLI.SR, after it is *%
no longer needed.

CALL CLOSE (25,JERR3)
IF (JERR3 .NE. 1) TYPE "JERR3 IS ', JERR3

163

o]

(] OOOO0OO0O0

[N o]

OO0

OO0

sNeNsNsNsNoNeoNeNsNeNe K]

*k

*k

*x

*%

*k

Before executing the swap (EXCLI), inactivate SYSIN. *k
SYSIN is the only task with priority one (1).

CALL AKILL(1)

EXCLI swaps to level two (2) to execute the instruction *k
just inserted into CLI.CM. Level two (2) is the RDOS CLI.
Upon completion of the swapped program, control returns to the
next instruction in this program.
CALL EXCLI
{

Reactivate SYSIN just as it was before the swap. *k

CALL ITASK (SYSIN,10,1,JERR4,1)
IF (JERR4 .NE. 1) TYPE "JERR4 IS ", JERR4

Upon return from the swap, delete file VVQQ, as it is no *%
longer required.

CALL DFILW ("DPOF:DIALOG:VVQQ",JERRS)
IF (JERR5 .NE. 1) TYPE "JERR5 IS ", JERRS

Return to the statement number passed in I6DUMRIN. *%

RETURN I6DUMRTN
END

LR A R A TR R R R R T R R A)

+
+
+

L R T S T R S S A S 2 2 I T P S

+

END RECEVFILE.FR +
+

164

B o _ N

e e e
§ e e o e e e e e
; I S S S S S T S N R S T S S A ST S S R AR
; + +
; + TOTLRM. SR +
; + wi%% CREATED 27 JUNE 19803 REV 02 %%aw 4
; + +
; TR TR T T T T S S S S T S T TR R S SRR S
; ——
e o o
; Nk
5 Program TOTERM.SR is called from MONLITOR.FR and always calls
; TERMOP.SR in turn. This program transitions the user [ron the
5 MOULITOR Command Lanjua,c to the transparent terminal only wode.
H The transition is effected whenever the user enters ""1T" anyvhicre
) in the command line after HONIYOR provides its pronpt. The
5 program, in addition to jumping to TERNOP.ER, also rcuwoves the
; "system'" device codes that were identified (via JIDRF) in SYSIN.SR.
H This 1s necessary, since TERNOP identifics its own device codes.
; Both TLRIOP and SYSIN use the saime device codes —— STTOl and $IPIl.
H There are no arguments or parcamcters that are passed vias TOTERIL.
H WRTFAR NS
; ——
; ———
.TITL TOTERM s;Program name - To Terminal Operution
ENT TOTLuM ;Enables o+ “le entry into this
yprogran
.EXTD TERMOP ;Dec’ s propg.um name (address)
;TFRMOP.SR as externul displacement
3TERNOP can now be accessed by TOTERM
LTXTH 1 ;Packs ASCIT strings left to right
.EXTU ;Undefined variables ure treated
;as External Displaccuent variables
JEXTN .I . 3Provides some FORTRA!! initializaticn
; ——————————————————————————————————
165

JIRYL ;Zero relocatable space starts
.ER: ERR ;Access to ERR and TERMOP nay be
.TOTERM: TERMOP sgained via indirect addressing to

sthese locations

.NREL ;Normal relocatable space starts

FIRST RENOVE TDLINTIFIED DEVICL CODES

3

’

TOTERII: ISR (0 LFARL

LDA 0, DICODL ;Lead device code for $TTIL
LSYSTH

LIRNY sRaiiove 1t frowm the "systen"
JMP CHELR ;If an error, check to sece if

;device has already been removed

LDA 0, D2CODE ;Load device code $TT01
LSYSTH

. IRMV ;Remove it from the “systen”
JMP CHKER 3 If an error, check to see if

;device has alrcady been removed

3 JUMP TO TERIOP.SR

JHP (@ .TOTERM

H ROUTINE T0 CHECK FOR LEXPECTED ERKROR

CHKFR: LDA 1, .ERDRM ;Has device been removed?
SUB 2, 1, SHR
JMP (¢ .TOTERH ;Yes = jump to TERNOP
JHP ¢ .ER sNo - state the abnormal error

H ROUTINE TO RETURN TO THE CLI ABNORMALLY

S o e e e e e e e e m e e e e e e -
ERR: .SYSTM
.ERTN yAbnormal return - error
JMP (@ .ER

l66

5 VARTABLES DEFINED

>

.ERDNM: FRDNM sERDNIT = 36, device not in system ecrror
D1CODE: TTI1 3 STTOY is the first device code
D2COLL: TTOI 3 $STTOL is the secound device code

JSR @ .FRET

FS.=0
THP=--167

LEND TOTERI

TR IE T TE T T T SN S T S S A S A S T S A i

5 4 N
: | END TOTERM.SR +
;o N

T T T S S T T TR T T 2 A A

167

IR I Bk I T T T S S I S T S T A

+
+

TERMOP . SR +
wik% CREATED 30 JUNE 19805 RLEV 02 #2x%x 4

P T T I T T T S S S A S N T R di SN R A

Program TERNOP.SR 1is called by TOTERMLSR, which is called {rom
MONITOR.FR. TFRMOP is the terninal only mode of operaticn for
intercormunication with the "systen." TFrom the "locel"
terninal, the wode of operation is as a transparcent terminal
connected to the "system." TLRNOP serves as a device driver
that cnables intercorwsunication between the "local"

system (devices $TTO and $77I) and a "system'" connected to it
via devices (devices $TTOl and $1T11).

T T s N
KNSR TNNRN

.TITL TERMOP ;Program name - Terminal Operation

.EXTN .TASK ;Permits program to externally
saccess task call TASK

.ENT TERMOP ;Fnables outside entry into this
;program

JTXTM 1 ;Packs ASCII strings left to right

.EXTU ;Undefined varaibles ave treated as
;External Displacement variables

JEXTN LT ;Provides some FORTRAN initialization

168

JARFL sZero velocatable space storts

IR: LRROR sAccess to ERROR and HOTYE]

LNorl: o ROTEL ;may be gained via indircct

JNOT2: NOTEH2 saddresting to these locations

T T T T TR
.NRT'T, ;Normal relocatable space starte

5 DEVICE CONTROL TABLE (DCT) LAYOUT

SRS T

AIDCT: TITLIAD ;Address of TTI1 DCT

A2DCT: TT0lADL ;Address of TTOl bCT

TTIIAD: STALISA ;Interrept state sove area - TTIL
-1 sMask word for no interrupis
TTIIRA ;TTIL dutervupt service routine

saddross

TTOLAD: STAZSA ;Interrupt state save area - TT01
-1 sMask word
TTOIRA ;TTOl interrupt service routine

;address

; ADDTTIONAL VARTABLES FOR STTI1/STTO! HANDLERS

plconp: TTI1 ;Device code - TTII

D2CODE: TTul ;Device code -~ TTOI

STAISA: .BLK 10 ;Eight word state save arca — TTII

STA2CA: LBLK 10 ;Same - T101

169

ikl

e e -

3 START OF TURNINAL OPERATIOXN

£ e e e m e -
Is.

TERNOP: JSR (¢ .FARL
SUR 1, 1

LA O, C.NOTL
LSYSTH

JMRL 2]

JHP (¢ LIR

s DZFIKL DEVICES $TTI1/STTOl

DEFIDEV:LDA O, DICODE
LA 1, ALLCT
LSYSTH
JIDEF
JHP (LER

DEF2DEV:LDA O, D2CODE

LDA 1, A2DCT
.SYSTH

L IDEF

JMP @ LER

5 DEFTLE LINLERD AS

>

DEFTASK:LDA O, IDAKRDPR
LDA 1, TSKPTR

PROGRAY

yLoad default mask
;Load bytcpointer to NOTE]

;Urite NOTEL te 1710

;Define TTI1 wvia the IDEF
;call, using device code
;TTI1 and its DCT address

sDefine TTCI via the IDEF
;call, using device code TTOL
;and its LCT ~ddress

AN ASYNCHROHOUS TASK

;Load the ID and priori.v of
stask LINERD; lcad task pointer

LTASE, ;to LINLRD
JUP @ .ER
; DEVICES $TT11/S8TTOl BEFCRE STARTING

NIOC TTI1
NIOC TTOl

170

H FIRST TASK == RUVAD AWD WRITE CHARACTERS FROM/TC TTI AND TTO

TrERMIo:

LVIRHOP:

3

b

I

IDAKDPR:

TSKPTR:
UPALROI:

LSYSTH ;Cet character frow 1TI
.GCHAR

JubP U .ER

LSYSTTI ;Put character to TTO
.PCHAR

JMP (¢ LFR

LDA 1, UPAROW ;Compare character to "7"
sup: 0, 1, SHR sIf « match, return to

JHP LVTRMOP ;the CLI. Otlervise,

SKbbh7Z 1701 soutput the character to TTOL

JMP -1
DOAS 0, TTO1

JMP TERMED sReturn to terminal read/write

LDA 0, & .NOT2
sus 1, 1
LSYSTH

LRI 21

JHP (t .FR

ROUTINE TO RETULN TO 1HL CLI NORMALLY

LSYSTE
.RTHN sNormal return - no error
JMP ¢ LER

DEI'INE ADDITIOLAL VARIADLLES USED ABOVE

1087410 ;LINERD ID is ten (arbitrary);
;priority is also ten (arbitrary)
LINERD sSecond task 1s LINERD
JIXRT <>t s PCHAR and CCHAR zero out the left
171

. CUIPTR
; \/
R R e R
;! ! !
;! ! !
5 ! BUFF ! BUFF+1 !
I R b I e R e R ¥
; N\
5 CHEPTR
)
LIKERD: LDA 1, INPTR
LbA 2, OUTPTR
SUB# 2, 1, SHR
JMP LINERD
LDA G, @OUTPTIR
LSYSTM
.PCHAR
JHP @ [FR
INC 2, 2
LDA 3, MAXPTR
SUB# 2, 3, SNR
JHMP INIT!
STA 2, OUTPTR
JMP LINERD
INTT1: ©LDA 2, CHKPTR

SECOLD TASK —— READ AND WRITE FROM/TO $TTI1 AND STT0)

;This routine operates on a first~in/first-out buffer concept.
;A single buffer is defined (BUFF) that is 133 characters

1 133 words lone, Lut cach word
;eontains just one charocter duve to the wvay the reads and

;long . (ROTH:

jwrites pack ASCIL1 stripgs.)

The bufter

Two pointers are defined to

skeep track of the latest charecter entered (I1NPTR) and the
slatest character exited (OUTPIR) . A third pointer (CHEPTR)
;always remains at the bepinning of tlie buffer and is used for

yinitialization, vhen required,
yinsure the buffer

;exiting characters.

JMP INIT]-2

BUFF+2

A fourth pointer (MARPIK) is used to

leagth 18 not excecded whon enteriug and

Pictorially, this locks ag foliowus:

BUFI'ER

/

/

/

/

YBUTEY

MAXPTR
\/
[4ttt b R 4+ o+ 4
! ! ! !
! ! ! 1

TBUFF+1311BUFFP #1321 001 T+153 !

FH4dtrttd i bbbt At o+ + 4+ 4+

/\
INPTR

;Compare in and out pointers

3Tf they are the same, there are
;jno further characters to print
yReturn to the line reacer

;Otherwise, output to TTO the
sjcontents of RUFF pointed to by
; OUTPTR

;Compare OUTPTR+] and NAXPTR

;1L they are the sarme, jump

;to reutine Lo re-initialize
;OUTPIR with the CiHXI'’R. Othervise,
ystore new value of OUTPTR

;and return to the lince veader

;Re—initialize OUTPTR by storing
;value of CHEPIR in OQUTPTR

5 ADDITTORAL

H

POTUTIR AKD MASK VARTABLES DEFIKED

Proceed!<15>"

NOTEl: .+1%2 ;Bytepointer to NOTEl message
LTXT "You have entered into the terminal only modc,
NOTE2: .+1¥%2
LTXT "You have returned to the local CLI mode!<15>"
OUTI’'TR: BUFF ;Initialize pointers to
INPTR: BUTF sbeginning of buffer BUYT
CHRPTR: BUFF
PHSK: 177 ;HMask to strip parity bit

H $TTI1 INTLRRUD'T SERVICE ROUTIHE

TTIIRA: STA 3, USP ;Save the previous processor
STA 2, SAVE2 ;state by saving all accurnulators
STA 1, SAVEL ;and the carry bit. USP is the
STA 0, SAVECD ;User Stack Pointer, location
MOVL 0, 0 ;016 (octal)
STA 0, SAVEC
DIAC 0, TTI1 ; Input the character from TTI1 to
LDA 3, PHMSK saccumulator zerc, and strip the
AND 3, O sthe parity bit in the right byte
STA 0, (INPTR ;yPut character in next empty
sbuffer location
LDA 1, INPTR 3Is the IKPTR at the end of BUFF?
INC 1, 1 ;Increment INPTR to compare with
LDA 2, MAXPTR yMAXPTR. If they are the same,
SUB+# 1, 2, SNR ;jump to check the location of
JMP CHLCK ;OUTPTR. Otherwisc,
STA 1, INPTR ;store the new value of INPTR
RETURII: LDA O, SAVEC ;Restore the state of the processor
MOVR 0, O sbefore rcturning to the next
LDA 0, SAVLO ;instruction in the program
LDA 1, SAVElL sinterrupted by input {rom TTIL
LDA 2, SAVE2 ;(This could be cither of the
LDA 3, USP jtwo tasks of TERNMCP)
JMP 0, 3
CHECK: ©LDA 3, OUTPIR ;If outptr is still at the
LDA 2, CHKPTR sbeginning of the buffer BUFF,
SUB# 2, 3, SNR ;there is a buffer overflow
JMP PROBI spotential requiring the processor
s;to halt! Otherwisc,
STA 2, INPTR ;store the new value of INPTR
JHMP RETURN sand then return
PROB1: HALT ;Not a recoverable errror - STOP!

173

5 $TTOI INTERRUPT STRVICE ROUTINE

TTOLRA: NIOC T101 ;Idle the device TTO! cna
JMP 0, 3 ;return. No neced to save the
;the processor state, as 1t 1s
ynot changed

5 ROUTIVE 70 RETURN TO THE CLI ARNORUALLY
;e m e e e m e e —mm e — e
ERROR: .SYSTH
LERTH ;Abnormal return - error
JMP @ LER

5 DEFIKE RECESSARY STORACE ARLEAS TO BL USED

y

SAVEO: O sProcessor save state

SAVEl: O ;locations

SAVE2: 0

SAVEC: O

MAXPTR: PUFI+133. ;Pointer to the ond of BUFT

BUFF: .BLK 133. ;BUFF is 133 words long (decimal)

JER @ .FRET

FS.=0
TNP=-167

.END TERIMOP

L B T R TN I T T

; + +
3 + END TERMOP.SR +
H + +

EE T O A T 2 SEE 2 R S S S S A S S

174

§ e el
§ e e e
; R IR 2 Ik TR T TR BT T T A S T S SN S SRS S
; N
; SYSIN.SR +
; ¥%% CREATED 4 AUGUST 1980; REV 04 wwwis
5 +
; MR I T TE TS S S S S R S T S S T
e e
| e
; N R T
5 Prorram SYSIN.SR is an asynchronous task that i1s activated via
H task calls and inactivated via task calls, TInitially, SYSTK is
5 activated by MONTIOR.FR. 1t is subscguently inactivated and
5 reactivated by SENDFILELFR and RECLVEILL Li. MONTLIOP also
5 inactivates SYSIK just befoere shifting to the terminel only
H mode of operation. SYSIH does scveral thines simultancouly.
5 First, it defines device codes STTUL and STTIL that arce not
H system gencerated. Sccond, SYSIN reads the inuput line {row the
; "system" — STTI1l ~ after the device defined intorrupt routines
5 store the input in a buffcr. Third, SYSIN readics task MCLITOW
H whenever it is suspended. And fourth, SYSIN writes to file
; VVQQ whenever 1t is created by program BLECEVEILN., SYSIN is of
H priority 1, which is lower in prccedence than MOUITOR, wvhich 1is
; of priority 0. SYSIN alco has the identity number 10. As
3 SYSIN is not a subroutine, there are no arguimerits or paramcters
H that are passed via SYSIM.
; ook ded
O S VS U S
§ e e e e
LTITL SYSIN yProgrem name - Systen Input
.ENT SYSIN ;Enables outside entry into this
sprogran
.EXTD .BUFl, .BUF2, .FBl, .FB2 ;These storage locations were created
;by CNVRT.SR and must be accessed by
;SYSIN. They are external displacements
.EXTN .ARDY 3 ARDY rcadies suspended tasks and
ymust be declared external normal
LTXTM 1 ;Packs ASCII strings left to right
JEXTU sUndefinced variables are treated as
sExternal Displacement variables
; - m - - - = e e e - - - . e e e e e e e = = =

.ER:

>

DIDCT:
D2DCT:

T1AD:

OlAD:

.ZREL

ERR

+NREL

DEVICE CONTROL TABLE LAYOUT

I1AD
ClAD

SSAl
-1
I1RA

SSA2
-1
OlRA

;Zero relocatable space starts

;ERR may be addressed indirectly
;via this location

;Normal relocatable space starts

;Address of $TTI1 DCT
;Address of S$TTOl DCT

;Interrupt state save area - S$TTIL
;Mask word for no interrupts
;STTI1 interrupt service routine address

;Interrupt state save area - $TTOl
;Mask word
3 STTO1l interrupt service routine address

H ADDITIONAL VARAIBLES FOR $TTI1/S$TTOl HANDLERS

CODEl :
CODE2:

SSAl:
SSA2:

H DEFINE BYTEPOINTER AND NULL WORD

- e e e e mm e e wm mm o e e e e

SYSIN:

DEV1:

DEV2:

TTI1
TTOl

.BLK 10
.BLK 10

SH1%*2

.TXT "DPOF:DIALOG:VVQQ"

SUB 1, 1

LDA 0, CODEl
LDA 1, DIDCT
.SYSTM

. IDEF

JMP @ .ER

LDA 0, CODE2
LDA 1, D2DCT
.SYSTM

.IDEF

JMP @ .ER

176

T

;Device code - $TTI1
;Device code - $TTO!

;8 decimal word state save areas

;Bytepointer to file VVQQ

;A null word

;This is no operation - holds a place

;Define $1TIl via the .IDEF call,
;using device code $TT1l and its
3sDCT address

;Define $TTO!l via the .IDEF call,
;using device code STTOl and its
3sDCT address

"

; DEFIRE AN ASYNCHRONOUS TASK TO KLAD LINE INPUT

3

RDLIRE:

3

SET:

RSETL:

LDA 1, INPTR
LDA 2, OUTPTR
SuBY 2, 1, SHR
JMP CHKDLAY

LDA 1, DLAYCHT
STA 1, CNTER

EXAMINE INPUT

LbA 0, CCUTPIR

INC 2, 2
LbA 3, MAXPTR
SUB# 2, 3, SNR
JLP RSET]

STA 2, OUTPTR
LDA 3, NULL
SUB# 3, 0, SNR
JUP RDLIKE

STA 0, OMATPTR
LDA 3, MATPIR
STA 3, FMATBUF
LDA 1, LF

SUB# 0, 1, SNR
JHMP COLPAR

LDA 1, CR
SUB# 0, 1, SNR
JHP COMPAR

INC 3, 3
STA 3, MATPTR
JMP RDLINE

LDA 2, CHKPTR
JMP SET

177

;Compare in and out pointers. If

;they are the same, there are no further
;characters from input

;Check a delay time-out before

;readying task HONITOR

;Otherwise, insure time-out parametcrs
;are reset and initialized

;Load the contents of outptr

sIncrement the outpointer itself
;Load the maxpointer and compare to
;joutpointer. If they’re equal,
;reset pointer to beginning of buffer

;Otherwise, give outpointer a new value
;Load » null word
;Is the character a null?(Inpuc)

;Yes — throw it avay and get next one

;No — store character in Match Buffer
;Save this location in Full Match Buffer

3;Is character a line feed?

;Yes ~ compare all of Match Buffer

;No - Is character a carriage return?
;Yes ~ compare all of Match Buffer

;No - increment the match buffer pointer
;Store the new value

;Return to get mnext input character

;If ocutpointer is at the ond of
;its buffer, reset to the beginning

3 AFTER A DYLAY TIME-0UT, READY MONITOR

3

REDYTSK:1DA 1, MATITR
LDA 2, MATSTRI
SURE 2, 1, SZR
JHP COMPAR

LSYSTH
.CLOSE 27
JMP L+

LDA 0, TSKPRI
LARDY
JHP RDLINE

H DELAY BEFORE READYING MONITOR

3

CHKDLAY :DSZ CKRTER
JMP DLAY
LDA 1, DLAYCKT
STA 1, CKTER
JHP REDYTSK

DLAY : LDA), PULSC
LSYSTM
.DELAY
JHP @ .ER

JMP RDLINE

H DEFINE VARTADLES AND BUFFERS

3

PULSC: 3
CNTER: 32
DLAYCNT:32

TSKPR1I: O

MATPTR: MATBUFR
MATSTRT :MATBUFR

FMATPEUF:0
RSPSZ: O
LF: 12
CR: 15

PMSK: 177

sInsure nothine is in the match buffer
3 If something 1s therc, compare the
sentire buffer

;1 not, then
;close file VVQQ
;If already closed, just continuve

;Load the priovity of HONITOR
;Ready MONITOR
sReturn to get next character

;Decrement the counter - if not zero
;delay a while longer
;Otherwise, reset delay values and

sallow MONITOR to take control
;Load the number of pulse counts

;Delay processing for the time allottced

;Return to check the input again

;3 decimal counts -- 3/10 sec
;Initial count 1s 206 decimal
;This crecates a 7-1/2 sec delay
;MONITOR s task priority is 0

;A pointer to start of Match Buffer
y Same
;Location of a full Match Buffer

;Teiporary location to store size of
;responscs gathered fronm CUVRT.SR

“;Line feed is an octal 12

;Carriage return is on octal 15
sMask to strip parity bit

5 LOOK AT THE MATCH BUFFTR AND CONPARE TO EXPECTED RLSPOLSES

COMPAR: LDA
LDA
LbA
STA

CPRLAG: STA
LDA
LDA

JHP
LDA
LDA
LDA
STA

CPR2AG: STA

0, MATSTRT

1
2
1

3

3

LFil
LBUF1
REPSZ

0, MATPTR
0, EMATPIR
3, 0, 2
SUB% 0, 3, SHR
CHPRL

0

1
z
1

0

3

>

’

3

3

LDA O,

LDA

3

b

MATSTRT
.FB2
LBUY2
RSPSZ

MATPTR
CMATPTR
0, 2

SUB# 0, 3, SKR
JHP CMPR2

H OPEN VVQQ IF 1T HAS BEEN CREATED

LDA 0, THPFL

SUB 1, 1
LSYSTH
.OPLN 27

JHP ERCHK
JMP WRTOFL-1

179

;Load start of Match Buffer

;Load size of firsL response cxpected
s;Load starting locaticn of first
sresponse buffer. Store size

sAfter setting pointer,

;get the character input

3Get first character of responsc buffer
yAre they the same?

;Yes ~ reset values to check next input

3No - start at the buffer beoinning
;Load size of second expected responsc
;Load start of second response buifer
yStore size

;Look at characters just as before

;Load bytepointer to file VVQQ
;Load the default mask

;0pen VVQQ on chennel 27

;Check for expected error condition
31f no error, then begin output of
;file VVQQ to "system"

5 OUTPUT UNiNTYCILD RESIONSES TO

oUTPUT: STA 1,
LbA O,
LSYETH
.PCHANR
JM¥P (¢ LER

ILDA 2, FIUCLUF
SUB: 1, 2, SLR
JHP TORDLIN

IsC 1, 1
JMP QUTruUT

o DLEF1UE BUFFER POILTLRS

: R

QUTPTR: BUFR

CHKPTR: BUIR

INPTE: LUFR

MAXPTR: BUI'R+[33

RETURN

5 OUTPUT CARRIAGE

TORDLIR:LDA O, CR
LSYSTH
LPCHAR
JUP (¢ .FR
LDA 1, MATSTRT
STA 1, MATPIR
JMP RDLIKL

TO BUFFERS

TERMTNATL

I VVQQ do
sMatch Buff

yStart at b

;Put a char

;L.oad locat
3 1s oulput

;Yes = send
sthe next 1

SCRERN

¢s not exist, output
er contents to terminal
cginning of Match Buffer

>

acter to terminal - STTO

ion of last buffcr character
complete?

carriage return and read
iune for input

;No - increwent buffer pointer and

yrepeat

;Pointer to
;Pointer to
sPointer to
;Pointer to

next output character
bulfcer start

next input bulfer locsticen
the end of iuput buifcer

AS 1LAST CHARACTER OF A WRITE

180

;Load carra
;Put carrai
;Reset poin

sBuffer and
;next line

ige return
ge return to terminal

ters to beginning of Match
return to rcad the

: CONTITUR TO COHPARDL FAPECTED RESPORSLS WITH 1LPUT
2
s LDbA 0, MATPUR yLook at next cheracter in
1HC 0, O sresponse buffer and matceh buifer
INC 2, 2
DSZ RsPS52 ;Hes the size of the expected response
JMP CPRIAG ;been exceeded? Lo - contirue comparing
LDA 1, MATSTR ;Yes —~ resct buffer pointers
STA 1, MATPTR sand return to read tlie nezt line
JHP RDLINE
CHPR2: LDA O, MATPIR ;Do the same for second response

INC 0, 0

TG 2, 2

DSZ RSPSZ

JHP CPR2AG

LDA 1, MATSTRT
STA 1, MATPIR
JHP RDLINE

5 CHECK FOR AN IXPECTED ERROR COIDITIONR

S
ERCIOK: Llxa 1, JERDLE ;Load expected error code - LERDLE

Subs 1, 2, SHR ;Does file VVQQ cxist?

JEP OUTPUT-1 ;No ~ juup to output to trrminal

LDA 1, .ERUFT ;l.oad another expected crror

suBks 1, 2, SZR ;Is this channel in use?

JMP (f LER ;No — state unexpected error coundition
H IF FILE VvVQQ EXISTS, WRITEL ALL IKPUT TO IT
5 e e e e e e e e e e e e e e m e e — — e -

LDA 1, MATSTRT 3Yes — write input buffer teVvQQ
VRTOYL: STA 1, HATPTR

LDA 1, ONE ;Load one (1) - nuwber of bvtes to write

LA 0, MATPIR ;Load pointer to match bufter

MOVOL 0, O ;Make this a bytepointer to right tyte

.SYSTM

JWRS 27 ;Write right byte to VVQQ

JHP ¢ LER

LDA 1, MATPTR ;Look at pointer to wotch bufrfer

LDA 2, FMATEUSH ;and location of last cnaracteor

sup+# 1, 2, SHR 1Is buffer writing coirclete?

JMP TORDLINE ;Yes - return to read next line

INC 1, 1 ;Mo = 1ncrement pointer and

JMP WRTOFL swrite next charccter to VVQQ

151

yERUST = 21, chawnel in usce
SyERDLE = 12, file doos not enist

5 DEFINE VARATOLES

T s e = — - e .

SERUFT: FRUFT

JERDLE: FRDLE

OhL: 1

5 $TTO) INTERRUPYT SERVICH ROUTINE
R T

ClRA: NTOC TTOL
Jur o, 3

STTL1 INTFRRUPT SERVICE ROUTIVE

TIRA: STA 3, USP
STA 2, SAVE2
STA 1, SAVFEI
STA 0, SAVED
MOVL 0, 0
STA 0, SAVEC

DIAC 0, TTIIl
LDA 3, PUSK
AND 3, 0

STA 0, (INPTR

LDA 1, IXPTR
INC 1, 1

LDA 2, MAXPTR
Ste# 1, 2, SKR
JUP CHFK

STA 1, 1NPTR

RETEN: LDA 0, SAVEC
MOVR 0, O

LDA 0, SAVEO
LDA 1, SAVEl
LEA 2, SAVE2
LDA 3, USP
JMpP 0, 3

CHEK: LDA 3, OUTPTR
LA 2, CHIPTR
SUL# 2, 3, ShR
JMP PROBL

STA 2, INPTR
JMP RETEN

PROB1: HALT

;Tdle device STTOD oud yetura to pewt
;line after dnterrupt. e necd to save
sthe processor state, as 1t 1s nrot

schanged

;Save the previovs processor state by
;saving all accuvnlators and the carry
;bit. USE ig User Stack Pointer

-3
r
s
—

;Input chavacter fron ¢
;Strip parivy bit snd

;store in BUFR

;Load pointer to nert RBUFR location
;Tucrement it

;Locd pointer to last buffer entry
;Is buffer full? Yes -

yjump to see 1{ Luffer has been used
;No ~ store new pointer valuc

yRestore the state of the processor

;Return to next locatien after ianterrupt

3If outptr is still & the beoinning
sof the buffer BUFR, thore 18 a

sbuller overflow poteutial reguiring
sthe processor to balt. Otherwvisce,

ystore new value of 1NPTR and
yreturn

;Not a recoverable ervror - STeP!

l
]
> ROUTENE TO RITURL TO 90 CLT ABNORMALLY
J BRI CSYSTH
JERTH yAbnoruwal return - error
JMP (¢ .LK
H DEFINE STORAGE ARDAS AND DUFIHKRS
D e e e e m e m e e o e — - -

SAVID:
SAVIEL :
SAVEZ:
SAVEC:

yStorage area for accumulator 0,
31, 2, and carry bit

O DO OO

MATBUFR: . BLX 133, ;Hatch buffer has 91 decinal
BUFE: LBLKE 133, yloacations. So does input bLuffer
D m e e e e e e e e e o e e — o e e e e e = -

S T S Tk T T S S T S I S

.'
+
END SYSIK.SR +
.‘
+

+ 4+ + + o+

R R I I S S A T I A T I T A N T

AD-A100 819 AIR FORCE INSY OF TECH WRIGHT-PATTERSON AFB OM SCMOO==£TC F/¢ 9/2
CO:STRUCTlgN“O; A _GENERAL PURPOSE COMMAND LANGUABE FOR USE IN C-=ETC (1)
0o w
UNCLASSIF IED AFH’/GCSIE(/COS-IS N
END
fists

3 o 3
mow 7-

oTIc

C_ -
C _______
c
C THIS IS THE CYBER ACTION FILE.
c +++++++ CREATED 7 AUGUST 1980; REV 01 ++
c
C THE FIRST CONTROL CARD IMAGE (I) CONTAINS EXPECTED RESPONSES FROM
C THE CYBER SYSTM.
1 COMMAND~, ..
c
C THIS COMMAND PERMITS LOCAL FILES TO BE SENT TO THE SYSTEM.
C CORRECT INPUT IS: PUT,LFN,SFN,1ID,SFPASSHRD
.CACT,PUT,#1,#2,#3,#4
WS COPYBY, INPUT, ZQY
Wc XFER/A #1 QQVV/R
WS %ZEOF
WS REWIND,ZQY
Vs REQUEST, ZQZ ,*PF
WS COPYBF,2QY,zQZ
WS CATALOG,ZQZ,#2,ID=#3 ,RP=999, PU=#4
WS RETURN, Z2QZ,2QY
END.
C THIS COMMAND PERNMITS SYSTEM FILES TO BE RECEIVED LOCALLY.
C CORRECT INPUT IS: GET, SFN, ID, SFPASSWRD,LFN
.CACT,GET, #1,#2,#3,#4
WS ATTACH,QZQ,#1,ID=i2,PW=%3
RR
WS COPYSBF,QzQ,OUTPUT
RC XFER/A VvQQ #&/R
WS RETURN,QZQ
END.
C THIS COMMAND PERMITS SYSTEM FILES TO BE PRINTED ON SYSTEM PRINTER.
C CORRECT INPUT IS: SPRINT,SFN, SFPASSWRD
.CACT,SPRINT,#1,#2
Ws ATTACH,ZXQ, #1 ,PW=4#2
vs REQUEST, ZYQ,*Q
WS COPYSBF,ZXQ,ZYQ
WS REWIND,ZYQ
WS ROUTE,ZYQ, DC=PR, TID=BB, FID=NEO,ST=CSB
WS RETURN, ZXQ,Z2YQ
END.
C THIS COMMAND PERMITS SYSTEM FILES TO BE PUNCHED ON SYSTEM PUNCH.
C CORRECT INPUT IS: SPUNCH, SFN, SFPASSWRD
.CACT,SPUNCH, #1,#2
Ws REQUEST,ZJQ,*Q
WS ATTACH,Z2JJ,#1 ,PW=#2
WS COPYSBF,2J3J,Z2JQ
WS REWIND,ZJQ
WS ROUTE, 2JQ,DC=PU,FID=NE?,TID=BB, ST=CSB
WS RETURN, 7JQ,2JJ
END.
184

C THIS CO!MMAND PERMITS SYSTEM FILES TO BE DELETED.

C CORRECT INPUT IS: DELETE, SFN, SFPASSWRD
.CACT,DELETE,{1,#2

WS PURGE,UZU, #1,PW=#2

WS RETURN, UZU

END.

C THIS CONMAND PERMITS DISPLAY OF SYSTEM FILES IN USE (CREATED,ATTACHED).
C CORRECT INPUT 1S: FILES

.CACT,FILES

WS FILES

END.

C THIS COMMAND PERMITS DISPLAY OF SYSTFEM PERMANENT FILES (AUDIT).
C CORRECT INPUT IS: PFILES,USER ID (PROB NUM)

.CACT,PFILES,#1

WS AUDIT,AI=P,1D=#

END.

C THIS COMMAND PERMITS USER ACCESS TO THE SYSTEM.

C CORRECT INPUT 1S: LOGON,USER ID (PROB NUM),USER PASSWRD
.CACT,LOGON, #1,#2

WL Dial the CDC CYBER telephone number (currently 5180 or 5159),
WL wait for the tone, and then place the telephone headset
WL into the modem receiver. Now strike any key

WL on the keyboard.

RW

ws LOGIN,#1,#2,777

END,

C THIS COMMAND TERMINATES ACCESS TO THE SYSTEM.

C CORRECT INPUT 1S: LOGOFF

.CACT ,LOGOFF

WS LOGOUT

WL The CDC CYBER is logged out. Enter uparrow L, ""L", to return
WL to the local NOVA/ECLIPSE CLI.

END.

185

 m—— e~ —

C THIS COMMAND PERMITS LOCAL FILES TO BE PRINTED ON SYSTEM PRINTER,

C CORRECT INPUT 1S: LPRINT,LFN
.CACT,LPRINT, #1
Ws REQUEST, XZX,*Q
WS COPYBF, INPUT, X2Y
Wwe XFER/A #1 QQVV/R
WS %EOF
WS REWIND,XZY
WS COPYSBF,XZY,XZX
WS REWIND,XZX
WS ROUTE,XZX,DC=PR,FID=NEO,TID=BB,ST=CSB
WS RETURN,XZX,XZY
END.
C THIS COiMAND PERMITS LOCAL FILES TO BE PUNCHED ON SYSTEM PUNCH.
C CORRECT INPUT 1S: LPUNCH,LFN
.CACT ,LPUNCH, #1
WS REQUEST,JZX,*Q
WS COPYBF, INPUT,JZY
WC XFER/A #1 QQVV/R
WS %EOF
WS REWIND,JZY
WS COPYBF,JZY,JZX
Vs REWIND, JZX
WS ROUTE,JZX,DC=PU,FID=NEO,TID=BB,ST=CSB
WS RETURN,JZX,JZY
END.
C THIS COMMAND PERMITS SYSTEM FILES TO BE EXECUTED (BATCHED) OH SYSTEM.
C CORRECT INPUT IS: SBATCH, SFN, SFPASSWRD,DISPOSITION, TCRMINAL 1D
.CACT,SBATCH,#1,#2,#3,#4
WS ATTACH,VQY, #1,PW=#2
WS BATCH,VQY, #3,Y=#4
WS RETURN, VQY
END.
C THIS COMMAND PERMITS LOCAL FILES TO BE EXECUTED (BATCHED) ON SYSTEM.
C CORRECT INPUT IS: LBATCH,L¥N,DISPOSITION, TERMINAL ID
.CACT,LBATCH, #1,#2,#3
Ws COPYBF, INPUT, VQX
We XFER/A #1 QQVV/R
Ws %EOF
WS REWIND, VQX
Ws BATCH,VQX, #2,Y=#3
Ws RETURN, VQX
END.
FINISH.
186
AR T TS

. -..._.. = - -i

THIS ACTION FILE MAY BE EXPANDED OR CONTRACTED, PROVIDED ENTRIES MEET
THE FOLLOWING FORMAT AND CONTENT GUIDELINES:

A. COMMAND IDENTIFICATION LINES ARE PRECEDED BY ".CACT" .

B. THE LAST LINE IN EACH DISTINCT COMMAND SEQUEKCE MUST BE "END." .,

C. THE LAST LINE OF THE ENTIRE FILE MUST BE "FINISH.", WITH THE
EXCEPTION OF COMMENT LINES.

D. COMMENT LINES MAY BE PRECEDED BY ANY CHARACTER NOT RESERVED
AS INDICATED ABOVE OR BELOW. FOR CONVENIENCE, "'C" HAS BEEN
CHOSEN.

E. THE FIRST TWO COLUMNS OF EACH LINE SAT1SFY CONTROL FUNCTIONS:

1) "I " PRECEDES THE EXPECTED RESPONSES FROM THE SYSTEM.
THEY ARE USED TO INITIALIZE THE EXPECTED RESPONSE ARRAYS.

2) "WS" PRECEDES INFORMATION TO BE WRITTEN TO THE SYSTEM.

3) "WL" PRECEDES INFORMATION TO BE WRITTEN TO THL LOCAL TERM.

4) "“RW" PRECEDES BLANK LINE; INDICATES A BACK-TO-BACK LOCAL
TERM READ FOLLOWED BY A SYSTEM WRITL.

5) '"WC" PRECEDES CALL TO COPY A LOCAL FILE AND WRITE IT
TO THE SYSTEM.

6) "RC" PRECEDES CALL TO COPY A LOCAL FILE THAT HAS BEEN
READ FROM THE SYSTEM.

7) “RR" PRECEDES BLANK LINE; INDICATES THAT AN "RC" CONTROL
WILL FOLLOW AND MAKES READY A LOCAL FILE FOR THE READ.

8) SEE A THROUGH D ABOVE FOR OTHER COKTROL TUNCTIONS.

F. ALL LINES (CONTROL CHARACTERS) MUST BEGIN IN COLUMN ONE (1);
ALL INFORMATION IN LINES OTHER THAN THOSE DESCRIBED IN A THLHROUGH D
ABOVE MUST CONTIKUE IN OR AFTER COLUMN NIKE (9), EXCEPT FOR COMMENT
LINES. (TABS CANNOT BE USED ANYWHERE IN THE ACTION FILE, EXCEPT
IN COMMENT LINES AFTER THEIR CONTROL CHARACTERS.)

XXz KRz s R Rz o Res R Kz N s N2 EsEe He Ezs R+ s N2 Kz s e Eo N e s Ko Kz Ko K2 Ko X2 K2 e e X e)

187

JR0P <o Spv—

i

C THIS IS THE DEC ACTION FILE. THERE ARE NO ENTRIES
C AS OF 15 JULY 1980.

c

I

FINISH.

C THIS IS THE VAX ACTION FILE. THERE ARE NO ENTRIES
c AS OF 15 JULY 1980.

C

I

FINISH.

C THIS 1S MY OWN ACTION FILE. THERE ARE NO ENTRIES
C AS OF 15 JULY 1980.

c

I

FINISH.

188

PRRSRY o

VITA

Wayne Griess was born on 5 April 1949 in Scottsbluff,
Nebraska. He graduated from high school in Cheyenne, Wyoming in
1967 and attended the University of Wyoming from which he
received the degree of Bachelor of Science in 1971. Upon
graduation, he received a commission in the USAF through the
RCTC program. He entered active duty as a communications
operations officer, first serving with the 1879th Communications
Squadron, Richards-Gabaur AFB, Missouri, He then served as
Voice Operations Branch Chief, 1931st Communications Group,
Elmendorf AFB, Alaska. During this time he earned a Masters of
Public Administration degree from the University of Alaska,
Anchorage. He was then the Commander, 2064tb Communications
Squadron, Shemya AFB, Alaska until entering the School of

Engineering, Air Force Institute of Technology, in January 1979.

Permanent address: 1950 E. 18th Street
Cheyenne, Wyoming 82001

189

-——— e

Py

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When DaLaLEnlarad)‘_
REPORT DOCUMENTATION PAGE BEF%%%"JSS;EE%E}‘&"SORM

1. REPORY NUMBER 2. GOVY ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER

AFIT/GCS/EE/80S- 15 J

A oo .31?'
4. TITLE (and Subtitle) 8. TYPE OF REPORT & PERIOD COVERED
-‘\ CONSTRUCTION OF A GENERAL PURPOSE MS Thesis

COMMAND LANGUAGE FOR USE IN — e

COMPUTER TO COMPUTER DIALOG : ORMING 03G. REPORT NUMBER
7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

Wayne D. Griess

Captain
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK

N N E R T ERS
Air Force Iunstitute of Technology (AFIT-EN) AREA & WORKUNIT NUMBER

Wright-Patterson AFB, Ohio 45433

1f. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

September, 1980

13. NUMBER OF PAGES

14, MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) 15. SECURITY CLASS. (of this report) :

Unclassified

15a. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

Agrosed, ff pdblic gelease; IAW AFR 190-17
FREDRIC C. LYNCH(\ Major, USAF

Director of Public Affairs

18. SUPPLEMENTARY NOTES

19. KEY WOROS (Continue on reverse side if necessary and identily by block number)
Command Language

Computer to computer dialog “
Computer Interfacing/Interconnection

Command Language Interpreter

20. ABSTRACT (Continue on reverse side If necessary and dentily by block number))

\fQO computer programs were developed and implemented to enable
intercommunication between a Data General NOVA/ECLIPSE computer system

and another modem linked computer system. One program, called TTERMOP,
allows a user to sit at a NOVA terminal and interact with a

connected system in & transparent mode. The other program, called MONITOR,

is a command language interpreter that examines and executes instructions !
(contained within an action file. An action file, consisting of instruction ..__r;§ i

DD ,%™, 1473 €oimion of 1 Nov 88 1s cesoLETE UNCLASSIFIED |

SECURITY CLASSIFICATION OF THIS PAGE (When Deta Entered)

_—————

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

N

strings and associated control parameters, is designed to be dependent
upon a connected system with regard to contents, yet independent of such a
connected system with regard to structure and format. The interpreter is
written in FORTRAN IV with FORTRAN and assembly language modules.

Actual implementation of the programs is accomplished between the
NOVA/ECLIPSE and the Aeronautical Systems Division Control Data CYBER
computer system. ASCII data files between 20 and 35,000 bytes have

been transferred between the two interconnected systems,

each transfer initiated by a single string command

acceptable to the interpreter and compatible with a tailored

action file for the CYBER system. The programs were designed to be
flexible enough for use with several different connected systems, and
general enough to be hosted on a system other than the NOVA/ECLIPSE, ~_.-
However, no attempt is made to implement the programs outside of the °
NOVA/ECLIPSE ~ CYBER environment.

UNCLASSIFIED

SECURITY CL ASSIFICATION OF Tu:r AGE "When Data Fn

o A

DATE %
FILMED |

